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Abstract

We study a model in which individuals, that are heterogeneous along a single dimen-
sion capturing productivity, choose which of two available groups to join and how much
costly effort to exert within their chosen group. On the one hand, individuals like to
be in groups where others’ average performance is high (global quality). On the other
hand, individuals are concerned with their ranking with respect to their peers’ average
performance (local standing). Nash equilibrium efforts are such that the higher the in-
dividual’s productivity the higher her private outcome. In contrast, it is not necessarily
the case that highly productive individuals exert more effort. When social welfare is
measured as the sum of individual utilities, Nash equilibrium efforts are never efficient
and whether they are higher or lower than efficient efforts depends on the strength of
global quality versus local standing concerns. Moreover, stable partitions of society
into groups may either resemble grouping by productivity or productivity mixing. In
contrast, efficient partitions must always exhibit grouping by productivity.
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1 Introduction

According to the theory of local comparisons (Festinger, 1954) individuals have an innate

desire to evaluate themselves and do so through comparisons with others. Nowadays, it

is widely accepted that individuals compare themselves with others in their local reference

group and that such comparisons determine, at least partially, their happiness.1 Falling

behind others may be a source of pain and being above others quite often provides benefits.2

Apart from these local comparison concerns, individuals also like to belong to high-quality

groups, where members are successful, because of the positive influence that such members

usually have on others.

Heath (1993) emphasizes that one of the most important determinants of university se-

lection by students is the status or prestige of such an institution, but also, that students

are concerned about their academic standing within their circle of classmates and friends.

The annual Survey of Admitted Students conducted by The National Research Center for

College and University Admissions in the United States reveals that, for more than 60%

of the students, school academic strength/quality is a key determinant of their enrollment

decisions, and that concerns about poor performance are one of the top reasons as to why

students decline enrollment offers.3 In a similar spirit, Nolfi (1979) indicates that the attrac-

tiveness of educational alternatives for an individual first increases with the average quality

of enrolled students and then decreases when such an average quality is above the ability of

the individual in question.

This paper examines how concerns for local standing and group quality determine the

formation of groups by individuals and the provision of effort in such groups.

We analyze a full information game that is composed of two stages. In the first stage,

individuals simultaneously decide which of the two available groups to join, with the restric-

tion that each individual can belong to at most one of the groups. Individuals then learn how

groups are composed and in the second stage decide how much effort to exert within their

group. The effort then translates into a private outcome, that is, a grade in an exam or the

number and quality of publications in a research department. Finally, payoffs are realized.

1See Frank (1985) and Frank (2013) for an illuminating analysis of the effect of status considerations on
a wide range of economic and social dimensions such as salaries or health. See also Dijkstra et al. (2008) and
Dumas et al. (2005) for evidence of how local comparisons occur in the classroom. Ferrer-i Carbonell (2005)
shows that the self-reported life satisfaction of West Germans is affected by the income of individuals in their
reference group.

2Choi et al. (2022) document how the prevalent cultural norm of Singapore, Kiasu, commonly translated
as Fear of Losing Out, generates a constant concern among students about not keeping up with others.

3See https://encoura.org/mind-gap-targeting-student-concerns-yield/ and https://encoura.org/mind-
gap-targeting-student-concerns-yield/.
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We assume that individuals are heterogeneous and that this heterogeneity materializes

along a single dimension that reflects private productivity.

We also assume that individuals’ utility can be separated into two components: a private

component and a social component. The private component reflects the utility that accrues

to an individual due only to her productivity and to her exerted effort whereas the social

component reflects the utility that accrues to an individual due to her social concerns. Such

a social component is composed of two elements: on the one hand, individuals care about

the quality of the group they belong to and, on the other hand, they care about how they

rank relative to others’ average performance within their own group.

The importance of group quality is justified by the positive effects that peers have on

individuals’ achievements and therefore we consider a framework where complementarities

play a role, specifically, from the point of view of any individual an increase in others’ per-

formance triggers an upward shift in that individual’s effort. Prominent models of individual

choice within social networks (Ballester et al., 2006; Ushchev and Zenou, 2020; Horváth,

2025) incorporate complementarities in analogous fashions. Whereas in these models indi-

viduals’ choices depend on the choices made by others to whom they are linked, we model

groups instead of networks, and thus pairwise relations are not necessarily specified. Further,

we assume that to make their choices, individuals do not necessarily rely on information re-

garding each other’s effort choices, which may be very demanding. Instead, we consider that

individuals have some information regarding the quality of their group, specifically, others’

average performance. We believe that this is a natural assumption in contexts where the

emphasis is on group performance as a whole rather than on pairwise relations.

Regarding local standing we simply posit that individuals are better off the higher they

rank relative to others’ average performance within their own group. In the area of education,

there are several reasons for students to care about their relative position: it may be that

better positions provide future benefits (Elsner and Isphording, 2017) or positively affect

admissions at higher levels of education (Grau, 2018).4

We analyze partitions of the society into two groups and conceive a partition as stable

when no individual has unilateral incentives to move from her current group to the alternative

group. Notice that, as individuals’ types are defined along a single dimension capturing

productivity, groups can only consist of one (and thus consecutive) interval of productivity

values or the union of non-consecutive intervals of productivity values.5

4 In a more anecdotal fashion, performing well in a research department may grant professionals access
to non-pecuniary benefits such as corner offices or benefiting from the possibility of sabbatical periods.

5Briefly, a group is consecutive if for any pair of individuals’ types belonging to it, all the types in between
also belong to it.
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As is typical in a large proportion of group and network formation games stable architec-

tures are multiple in nature but, despite this potential multiplicity, we provide (Proposition 1)

characteristics that groups in stable partitions must exhibit, thus limiting the number of such

stable partitions.

We consider effort choices that constitute a Nash equilibrium of the second stage of the

game and conclude that such an equilibrium exists provided that individuals do not place

excessive weight on others’ choices so that there is no escalation of efforts (Lemma 1). Nash

equilibrium efforts are such that the private product individuals obtain, namely, productivity

times effort, preserves the order of the exogenously given private productivities, in other

words, more productive individuals produce more. However, it does not necessarily follow

that more productive individuals exert more effort since this decision depends on who are the

peers surrounding them. The mechanism behind this result is that when highly productive

individuals are surrounded by peers with low productivity the complementarities between

those peers’ average performance (which is low) and the effort exerted by highly productive

individuals are hardly exploited and thus, in response, the effort exerted by highly productive

individuals is relatively small. The contrary happens to individuals of low productivity as

they face a high average performance by their (highly productive) peers.

We finally offer insights on how group configurations and efforts should be designed if

the interest is to maximize social welfare. When social welfare is defined as the sum of

individual utilities, a necessary condition to maximize social welfare is that within each

group individuals exert what we call efficient efforts. Efficient efforts and Nash equilibrium

efforts never coincide (Lemma 4), specifically, effort choices could be simultaneously efficient

and a Nash equilibrium whenever all the individuals exert the same level of effort, but this

symmetric proposal cannot be implemented either as efficient efforts or as a Nash equilibrium.

The conflict between Nash equilibrium and efficient efforts has its roots in the different

ways social concerns are incorporated. Nash equilibrium efforts incorporate both, concerns

for local standing and group quality whereas from the point of view of efficiency concerns for

local standing do not play a role. The reason is that, in the aggregate, the utility gains of

individuals who are above others’ average performance offset the utility losses of those who

fall below. Thus, only group quality affects social welfare, in particular, in the aggregate

each individual’s private product would positively affect all the remaining individuals in her

group via average performance. This positive externality is incorporated in efficient efforts

but it is not internalized by individuals when they choose effort in a decentralized way.

These observations lead to the conclusion that increasing the importance that individuals

grant to group quality and decreasing the importance they grant to local standing raise
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efficient efforts with respect to Nash equilibrium efforts.

With respect to the configuration of partitions, we show that social welfare is maximal

when individuals are organized in consecutive groups (Proposition 3 and Proposition 4).

When social welfare is the sum of individual utilities this result follows from the fact that the

sum of individual utilities is essentially the sum of individuals’ private product (Proposition 2)

and, crucially: (i) each individual’s efficient effort increases with others’ productivity and (ii)

the more productive individuals are the more sensitive they are to others’ productivity. When,

alternatively, social welfare is defined as the sum of individual efforts, and the individuals

within a group are assumed to play Nash equilibrium efforts so that only group configurations

can be manipulated, it is also the case that efficient partitions consist of consecutive groups

and the reason is analogous to the one posed above.

We close the section devoted to social welfare with an extensive analysis of whether

efficient partitions can also be stable (see the discussion in Section 5).

1.1 Our contribution

1. We contribute to the literature that investigates the role of status concerns by naturally

describing a process by which individuals form groups to engage in a strategic choice of effort

afterward. Effort affects group quality, which confers global status, and also the individuals’

position relative to others’ average performance, which confers local status. While in our

model global and local status are endogenous, to the best of our knowledge previous literature

(as it will be largely described below) either considers fixed social structures within which

individuals make strategic choices, such as consumption or effort, or individuals only choose

their social circle. We thus aim to build in the direction of reconciling these two approaches.

2. We also aim to feed the discussion of how status concerns affect group formation

in environments other than firms.6 We have in mind decisions such as accepting offers at

universities or the formation of study groups by students. Our analysis may inform the un-

derstanding of how individuals’ private productivities are the key drivers of the incentives to

join groups of varying quality. In particular, we rationalize the emergence of non-consecutive

groups, featuring a mixing of individuals’ productivities, and not only consecutive groups.

That is in contrast with the pervasive emergence of segregative outcomes in group formation

models within the strand of literature studying jurisdictions and the provision of public goods

(see Baccara and Yariv (2013) and Jehiel and Scotchmer (2001) and the references therein).

The works by Pack and Pack (1977) for Pennsylvania and Persky (1990) for the Chicago

metropolitan area conclude that communities appear to be more heterogeneous than the

6See Gola (2024) for a study on occupational sorting under social status concerns.
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well-known Tiebout model predicts. In a similar vein, Stein (1987) documents little sorting

across different dimensions (income, occupation, education) in the majority of the states in

the United States. For the Boston metropolitan area, Epple and Platt (1998) document how

the income of the wealthiest households in a jurisdiction of low average income exceeds the

income of the poorest households in a jurisdiction of high average income.7

Also, anecdotal evidence suggests that students do not always attend the most selective

college (where students may be, as a consequence of the selection, of high productivity) that

has admitted them and that the desire to be a big fish in a small pond (a better student

surrounded by relatively worse students) may guide this choice.8 The model offers results in

line with this evidence, that is, stable partitions may arise in which some individuals prefer to

be surrounded by lowly productive peers instead of belonging to groups in which individuals

are highly productive. The basic mechanism is that for an individual who is evaluating

whether to move to an alternative group the fact that individuals in such a group are highly

productive and perform, on average, better than individuals in her current group does not

compensate her if she largely falls below others’ average performance in such a group.

3. We shed light on the relationship between effort choices and group formation in the

presence of status concerns. In our model more productive individuals obtain higher private

outcomes, but it is not always the case that they exert more effort, as stated above, the level

of effort exerted depends on the productivity of that individual’s peers.

4. We offer an extensive analysis of social welfare and provide relevant insights on how

to design groups in order to maximize it.

The rest of the paper unfolds as follows. Section 2 provides further literature connections.

Section 3 presents the model and the equilibrium concept. Section 4 presents the equilib-

rium analysis. Section 5 is devoted to the social welfare analysis and Section 6 concludes.

The Appendix in Section 7 contains a discussion on additional aspects such as: the role

of externalities between groups (Subsection 7.1), the case of incomplete information about

individual productivities (Subsection 7.2), the case in which there are more than two groups

(Subsection 7.3) and additional discussions on the existence of stable partitions and efficient

efforts (and how to restore them) respectively in Subsection 7.4 and Subsection 7.5. The

final Subsection 7.6 contains the technical proofs.

7Also, see Staab (2024) for a discussion on these lines.
8See https://www.moorecollegedata.com/post/the-less-prestigious-college-choice. Additionally, the em-

pirical analysis by Cakir (2019) for the political system in Turkey also suggests that resourceful politicians
prefer to be part of less prominent parties, where they are more influential, whereas politicians with little
assets prefer to benefit from well-established parties
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2 Further literature connections

This paper is closely related to the literature that focuses on status concerns. To the best of

our knowledge, Damiano et al. (2010) and Staab (2024) are the most closely related papers as

both of them incorporate individuals’ concerns for group quality and local standing. Below

we discuss how such models differ from the one we present here.

Damiano et al. (2010) consider a model in which individuals choose between two organi-

zations of fixed capacity and derive utility from the mean quality of an organization as well

as from their ranking within such an organization. Contrary to our case, apart from choos-

ing an organization, no additional choice is made by individuals. Furthermore, the authors

consider a many-to-one matching model in which the resulting equilibrium consists of two

overlapping intervals of individuals’ types. In contrast to our results, perfect segregation of

the individuals into groups is not a necessary characteristic of efficient configurations.

Staab (2024) considers a model in which individuals observe prices for group membership

and must decide group belonging and the level of engagement within their group. In contrast

to our case, a key assumption is that higher types value group quality more. Additionally,

the level of engagement determines how much an individual benefits from a group, but it

has no strategic implications. In our case, efforts result from a strategic interaction of group

members and such efforts determine local standing and group quality. The research questions

are also different, whereas our interest is in the relationship between strategic effort choices

and group formation Staab (2024) analyzes which groups can be formed and which ones

might be offered by an institution, such as a monopolist or a competitive market.

Within the line of research studying the role of local standing of individuals embedded

in networks, López-Pintado and Meléndez-Jiménez (2021) consider a dynamic model of ran-

dom networks in which individuals derive extra utility when their performance is above a

comparison threshold that measures peers’ performance, as in our case. In contrast to our

case, the authors primarily consider homogeneous agents and do not investigate the role of

group quality. The authors’ main research question, namely the role of competitiveness in

large societies, is also different from ours.

Ghiglino and Goyal (2010) and Immorlica et al. (2017) analyze the impact of local com-

parisons on the choices made by individuals embedded in exogenously given social networks.

In contrast, in our case group belonging is endogenously determined. The research questions

in these two papers are also different from our main focus. Ghiglino and Goyal (2010) study

the implications of allowing local comparisons in a general equilibrium model and thus they

are concerned with how equilibrium prices and allocations are affected by such comparisons.
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Immorlica et al. (2017) consider that only upward comparisons are of importance and within

such a framework they analyze the role of cohesion on the equilibrium outcomes.

Bramoullé and Ghiglino (2022) analyze the role of loss aversion in consumption in net-

works, a research question that greatly differs from our approach. They find that, in some

circumstances, consumers choose the same level of consumption to avoid status losses. In our

model, it is never the case that individuals’ private products are the same within a group.

Ushchev and Zenou (2020) study a model in which individuals have preferences for con-

formity and interact on a fixed network. The authors characterize the Nash equilibrium of

individual actions and also study efficient actions. In an extension of the model, the authors

show that if individuals also have the option to choose their friends (endogenous network),

then the only pairwise Nash stable network is the complete one or the homophilic network,

in which individuals relate only to others of the same type. In contrast, the current model

allows for the possibility of extreme homophilic relations but also heterophilic ones in which

a mixing of productivities emerges.

There is also abundant literature studying the formation of groups. We mention here

some prominent pieces of research:

Watts (2007) studies a model in which individuals, who care either about local com-

parisons or group quality, but not both simultaneously (contrary to our case), decide which

group to join. Beyond group belonging, there are no additional decisions made by individuals.

Some of the central research questions are also different, in particular, the author analyzes

what happens to stable partitions when new locations are added.

Milchtaich and Winter (2002) consider a model of group formation with fixed groups in

which individuals have preferences for joining the group with individuals similar to them-

selves, in contrast, we do not consider such homophilic preferences. Their research question

is also different from our main focus as the authors are mainly concerned with the conflict

between stability and efficiency.

Nguyen et al. (2020) analyze stability and efficiency within a model in which individuals

may join multiple social groups. In contrast to our proposal, the authors consider a utility

function which resembles the one proposed in the connections model by Jackson and Wolinsky

(1996), in particular, individuals are heterogeneous in the cost of joining groups and get the

intrinsic value of each particular group they belong to.

Morelli and Park (2016) study the formation of coalitions by heterogeneous agents through

a cooperative game in which agents care about the power of their coalition and their ranking

within it. Contrary to our case, the number of groups is endogenous to the model and some

of the research questions, such as how the division of the surplus determines the structure of
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coalitions, are different from our main focus.

As briefly advanced, the local public good literature is also related to our proposal as it

analyzes the formation of jurisdictions where a local public good is to be produced (Wood-

ers, 1980; Greenberg and Weber, 1986; Gravel and Thoron, 2007). The coalition formation

literature (Bogomolnaia and Jackson, 2002; Banerjee et al., 2001) also shares some common

aspects, as it essentially studies group formation. The focus of these papers is on the role

of different stability notions in the context of hedonic coalition formation games. Another

paper that addresses group formation in a public group provision game is Ahn et al. (2008).

3 The model

Let N be a set with a population of N individuals. Each individual is labeled as i ∈
{1, 2, ..., N} and is characterized by an exogenous productivity parameter bi ∈ (0,∞) that

defines her type. Without loss of generality, we assume that b1 > b2 > ... > bN .

A partition of the society is a specification of two groups such that each individual belongs

to exactly one group. Thus, the number of groups is fixed but the formation of these groups

is endogenously determined.

The utility of an individual i in group G consists of a private component and a social

component. Regarding the private component, individual i enjoys the product generated

when she exerts a costly effort ei,G ∈ (0,∞).9 The social component consists of two as-

pects: the quality of the group and the individual’s standing with respect to others’ average

performance within her group. The expression for others’ average performance is given by

Ai,G =

∑
j ̸=i∈G bjej,G

|G| − 1
. (1)

We assume that the utility of individual i ∈ G takes the form

ui(ei,G, e−i,G) = bi ei,G − 1

2
e2i,G︸ ︷︷ ︸

private component

+α[ei,G Ai,G]︸ ︷︷ ︸
group quality

− β[Ai,G − bi ei,G]︸ ︷︷ ︸
local standing︸ ︷︷ ︸

social component

, (2)

where α, β > 0. The utility of an individual who is the only member of her group consists

of the private component

ui(ei,{i}, e−i,{i}) = biei,{i} −
1

2
e2i,{i},

9We use below the shorthand notation e−i,G to refer to the efforts exerted by individuals other than i.
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where, for consistency, we use e−i,{i} to account for others’ efforts, although in this case

such efforts are zero because individual i does not have peers.

In Eq. (2) the private component consists of the private product minus the (convex)

cost of effort and the social component includes concerns for both, group quality and local

standing. Specifically

(i) group quality materializes in that there are complementarities between others’ average

performance and own productivity.10 From the point of view of a given individual, an increase

in others’ average performance triggers an upward shift in her own effort. The parameter α

captures the relevance of the group quality component.

(ii) local standing materializes in that individuals compare their performance with the

average performance of others within their group and derive utility losses whenever they fall

behind such an average performance and utility gains when they stand above. The parameter

β captures the relevance of local standing.11

From Eq. (2) it follows that, everything else equal, higher average performance: (i) benefits

individuals through improved group quality but (ii) hurts individuals via more disadvanta-

geous local standing, thus, a trade-off emerges. As we will see below, in extreme scenarios in

which an individual is highly productive only group quality matters for her decision of which

group to join.

We study a two-stage game of full information with the following timing

1. Individuals simultaneously decide which group to join.

2. Individuals learn the composition of groups.

3. Individuals simultaneously choose the effort they exert in their own group.

4. Payoffs are realized according to Eq. (2).

We believe that this two-stage model matches some scenarios that may naturally emerge

in real-life environments such as those in which students first decide which enrollment offer

from a university to accept and afterward, how much effort to exert once they are surrounded

by their peers, or those in which professionals decide which offer by institutions (universities,

firms) to accept and afterward, how much effort to exert once they form part of such an

institution.

We focus on pure strategy Nash equilibria and our main motivation for this choice is to

10As Damiano et al. (2010) state: ”naturally, people desire to join organizations with high-quality members
if being in the company of high-quality colleagues raises their own utility or productivity.”

11The study by Mujcic and Frijters (2013) analyzes different dimensions of the trade-off between absolute
and relative income by university students in Australia. The authors conclude that the relative comparison
income model, in which individuals compare themselves to the average income in society, is the one that best
accounts for the data when predicting the observed choices.
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offer a (perhaps) clean prediction regarding which groups individuals join and hence whether

productivity grouping or mixing takes place.12 Beyond our aim, there is experimental research

that points out that individuals tend to play pure strategies (see Friedman (1996) and also

the discussion in Cartwright and Wooders (2009).13

Let an arbitrary partition be denoted by G and G be the set of all possible partitions that

can be formed by the population N of size N . A strategy of an individual i consists of a pair

{G1, G2} × ei, where the first component refers to the group individual i wishes to belong

to and the second component is a mapping ei : G → R+ such that ei,G∈G ∈ R+ is the effort

made by individual i in group G ∈ G, for a particular partition G ∈ G. When there is no

ambiguity we simply use the shorthand notation ei,G to refer to the effort made by individual

i ∈ G ∈ G. A profile of effort strategies e ≡ (ei,G)i=1,...,N ∈ RN×|G|
+ is a collection of efforts

made by individuals for each partition G and each group G ∈ G.
We study effort choices and partitions that constitute a subgame perfect equilibrium of the

proposed game. In particular, we require that partitions are immune to unilateral deviations

and that for each possible partition effort choices exerted by individuals in their own groups

constitute a Nash equilibrium. Definition 1 and Definition 2 help to formalize these ideas.

Definition 1. (Effort-choice subgame -Nash equilibrium-) Fix G ∈ G. Then, the

effort choices ei,G for each i ∈ G constitute a Nash equilibrium of the second stage of the

game (effort choice subgame) whenever

ui(ei,G, e−i,G) ≥ ui(e
′
i,G, e−i,G), e′i,G ̸= ei,G.

Definition 2. (Stable partition) Partition G = {G1, G2} is stable whenever for each

individual i ∈ Gs ∈ G, , s, s′ ∈ {1, 2} and s′ ̸= s

ui(ei,Gs , e−i,Gs) ≥ ui(ei,Gs′∪{i}, e−i,Gs′∪{i}).

Two comments are in order: first, for the main results we are not considering situations in

which the ability of individuals to move across groups is restricted by the consent of members

in the group they wish to join.14 We discuss on this possibility in Subsection 7.4. Second,

stability only relies on the robustness to unilateral deviations and not on group deviations.

12 In this game equilibrium existence is guaranteed, in particular, once we solve for the second stage Nash
equilibrium efforts the game ultimately consists of a finite number of individuals each with a finite number
of strategies, namely, group belonging, therefore in this case Kakutani’s fixed point Theorem applies.

13Also, in dynamics contexts, there is literature pointing out the emergence of serial correlation in the use
of mixed strategies, an issue that interferes with the assumption that individual choices are not predictable
by opponents. For references see Walker and Wooders (2001) and Duffy et al. (2024).

14We thus consider the Nash stability notion in Bogomolnaia and Jackson (2002), Milchtaich and Winter
(2002) and Bogomolnaia et al. (2008).
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4 Equilibrium analysis

In this section, we first analyze equilibrium efforts within a given group and then proceed

to the analysis of stable partitions. For the last part, we pay special attention to group

configurations that resemble sorting by productivity and productivity mixing.

4.1 Exerting effort in a group

From the utility specification in Eq. (2), it is direct to assess that the optimal effort of an

individual is increasing in others’ average performance, in particular, for an individual i ∈ G

that faces others’ average performance Ai,G the best reply is ei,G(e−i,G) = bi(1+β)+αAi,G.
15

Nash equilibrium efforts exist in this context when the impact of an individual’s effort on

that of her peers in a group is (eventually) less than one-for-one so that there is no escalation

of efforts.

To introduce the formal result let us focus on a non-singleton group G and let W be a

square matrix of size |G|, whose largest eigenvalue is µ1(W ) and that has entries: wii = 0

and wij = bj/(|G| − 1), j ̸= i. Analogously, let I be the identity matrix of size |G|.

Lemma 1. The matrix [I−αW ]−1 is well-defined and non-negative if and only if 1 > αµ1(W ).

Then, the effort choice subgame has a unique Nash equilibrium. In such an equilibrium

bi ei,G > bj ej,G for each pair of individuals i, j such that bi > bj.

The largest eigenvalue modulus captures the extent to which a change is amplified within

the group. When such a modulus is sufficiently small, the impact of an individual’s effort on

that of her peers in a group is (eventually) less than one-for-one.

The result in Lemma 1 states that individuals’ productivities predict individual outcomes,

which is consistent with the literature on students’ performance and the relation between

cognitive skills and wages (Murnane et al., 1995; Schmitt et al., 2007; Blázquez et al., 2018).

We emphasize that in contrast, it is not always the case that more productive individuals exert

more effort. That is consistent with the findings by Babcock and Betts (2009) who suggest

that ability and effort are positively but not perfectly correlated. The mechanism behind

our result is that when highly productive individuals are surrounded by peers of relatively

low productivity, the complementarities between those peers’ average performance (which is

low) and the effort exerted by highly productive individuals are hardly exploited and thus, in

15The best reply of an individual i ∈ G would be the same regardless of the chosen indicator of others’
performance in the local standing part, for instance, we may consider the private product of a particular
individual. Such a best reply would be also increasing in others’ average performance for any increasing
transformation of such an indicator in the group quality part.
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response, the effort exerted by highly productive individuals is relatively small. Note that the

contrary happens to individuals of low productivity as they face a high average performance

by their (highly productive) peers. Overall, this mechanism thus also emphasizes the role of

friends’ outcomes on individuals’ performance.16

Remarkably consistent with the findings by Hopkins and Kornienko (2004) is that the

excess of efforts made by individuals within a given group when social concerns are present

leaves them ranked equally, according to private products, than when social concerns are

absent. More specifically, note that for α = β = 0 each individual optimally exerts effort

ei,G(e−i,G) = bi, and thus individuals’ private products also preserve the ranking of individu-

als’ productivities.

The following example illustrates the Nash equilibrium of the effort choice subgame in-

duced in the case of two individuals that form a group.

Example 1. Let G = {1, 2}, α, β > 0, and individual productivities be b1 > b2. In this case,

Nash equilibrium efforts are

e1,G = (1 + β)
b1 + αb22
1− α2b1b2

, e2,G = (1 + β)
b2 + αb21
1− α2b1b2

.

Observe that the more important the social component, via larger β or larger α, the higher

the efforts exerted by both individuals. Notice also that each individual’s effort is increasing in

her own and others’ productivity.17 For the case β = 1, α = 0.5 and b1 = 0.8 > b2 = 0.4 Nash

equilibrium efforts are e1,G = 1.9 and e2,G = 1.56, and thus b1 e1,G = 1.52 > b2 e2,G = 0.62,

as stated in Lemma 1.

4.2 Stable partitions

The discussion around stable partitions may benefit from the introduction of the following

definitions.

Definition 3. Consecutive group. Group G is consecutive if for any pair i, j ∈ G such

that bi < bj it follows that k ∈ G whenever bi < bk < bj.
18

As individuals can be organized in groups that are either consecutive or non-consecutive,

we can categorize the relation between the two groups according to the productivities of the

individuals that form them.
16For a reference on this issue see Berndt (1999) and also the references therein.
17 It can also be shown that the higher an individual’s productivity the higher the effect that an increase

in others’ productivity has on her own effort, formally, for each i it holds that ∂2ei,G/∂bi∂bj > 0 for j ̸= i.
18Baccara and Yariv (2013) and Bogomolnaia et al. (2008) also consider the notion of consecutive groups

and Greenberg and Weber (1986) consider a seminal related concept in the context of Tiebout economies.
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Definition 4. Absolute dominance. Group Gs absolutely dominates other group Gs′ ,

s ̸= s′ whenever ∀i ∈ Gs and ∀j ∈ Gs′ it follows that bi > bj.

This dominance relation is illustrated in the partition in Fig. 1, which is composed by

consecutive groups.

b1 b2 b3 b4 b5

G2G1

Figure 1 – A partition in which G1 absolutely dominates G2

In contrast, in the partitions in Fig. 2 and Fig. 3 (some of the) groups are non-consecutive,

and, in a sense, more heterogeneous in their compositions than if they both were consecutive.

Non-consecutive groups relate to each other in two alternative ways. The first case is

illustrated in Fig. 2, where for each individual in G2 there is an individual in G1 with higher

productivity, and for each individual inG1 there is an individual inG2 with lower productivity

(see Definition 5). The second case is illustrated in Fig. 3, where some individuals in G1 there

is no individual in G2 with lower productivity.

Definition 5. Relative dominance. Group Gs = ∪k′

k=1Ik relatively dominates other group

Gs′ = ∪l′

l=1Jl whenever for each subinterval k = l for each i ∈ Ik and for each j ∈ Il it follows

that bi > bj.

b1 b2 b3 b4 b5

J2I2J1I1

Figure 2 – A partition in which G1 = I1 ∪ I2 relatively dominates G2 = J1 ∪ J2
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b1 b2 b3 b4 b5

I2J1I1

Figure 3 – A partition in which G1 = I1 ∪ I2 neither absolutely nor relatively dominates G2 = J1

In what follows we provide some of the characteristics that stable partitions must exhibit.

Proposition 1. In a stable partition G

1. For each individual i ∈ Gs, |Gs| > 1, s ∈ {1, 2}, it must hold that

(i) Ai,Gs > Ai,Gs′∪{i} ⇒ ei,Gs + ei,Gs′∪{i} >
2β

α
, s′ ∈ {1, 2}, s′ ̸= s,

or

(ii) Ai,Gs < Ai,Gs′∪{i} ⇒ ei,Gs + ei,Gs′∪{i} <
2β

α
, s′ ∈ {1, 2}, s′ ̸= s.

2. If individual i ∈ Gs, |Gs| > 1 is such that bi ≥ b(α, β) = β/α(1 + β) then it must hold

that Ai,Gs > Ai,Gs′∪{i}, s, s
′ ∈ {1, 2}, s′ ̸= s.

3. If bi ≥ b(α, β) for each i ∈ N then all the individuals can be organized in one group,

and the alternative group is therefore empty.

Point 1 describes how the benefits of belonging to a particular group depend on the extent

to which an individual can take advantage of others’ average performance. Such an individual

derives the highest utility when she is part of a group with the highest average performance

(condition 1.(i)) if she is able to exert sufficiently high efforts so that, overall, the prospects

of global quality and local standing benefit her. An instance in which this happens is when

such an individual is productive enough, in particular when her productivity is above the

threshold b(α, β) described in point 2, as then she is able to exert a level of effort higher than

β/α in any group.19

The ratio β/α has a very intuitive meaning, it measures the importance of local standing

relative to global quality. More specifically, the higher α the higher the extent to which

complementarities can be exploited, meaning that even with a smaller level of effort it is

still beneficial for an individual to belong to a group in which others’ average performance

is high. The contrary happens with β, the larger its value the higher the effort should be

for an individual to be able to overcome disadvantageous local comparisons in a group where

19That can be assessed by plugging a value bi > b(α, β) in ei,G(e−i,G) = bi(1 + β) + αAi,G.
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others’ average performance is high. The interpretation for condition 1.(ii) is analogous in

the natural opposite direction.

Point 2 simply tells that if an individual is sufficiently productive no group should be

available to her in which she experiences a higher average performance than in her own

group.

The observations in the previous points give rise to the conclusions in the following Corol-

lary 1.

Corollary 1. Let G be a partition that contains non-singleton groups Gs and Gs′ , s ̸= s′.

Then

1. bi ≥ b(α, β) for each i ∈ Gs such that Ai,Gs > Ai,Gs′∪{i} is a sufficient condition for 1.(i)

of Proposition 1 to hold.

2. bi < b(α, β) for each i ∈ Gs such that Ai,Gs < Ai,Gs′∪{i} is a necessary condition for

1.(ii) of Proposition 1 to hold.

The statements made in Corollary 1 are useful because they inform about the possibilities

of stability in terms of the primitives of the model. Also, they are useful in situations in which

we know how, from the point of view of an individual i, the average performance in the group

she is evaluating whether to move relates to the one in her current group. In this case, it

is enough to look at how productive an individual is to assess, up to a certain extent, the

absence of incentives to switch groups.20

Point 3 states that individuals can be always organized in one group whenever they are

sufficiently productive.

4.2.1 Specific classes of partitions

Prominent partitions are those in which groups are consecutive, and hence there is grouping

by productivity, and those in which (some of the) groups are non-consecutive, thus exhibiting

a mixing of productivities. Guided by the prescriptions in Proposition 1 we study when such

partitions can be stabilized.

The following Lemma 2 provides the conditions for stability of a partition in which there

is grouping by productivity and thus a group, say G1, (A)bsolutely (D)ominates the other,

G2. We thus refer to such a partition as an AD-partition and emphasize that the individuals

in G1 face a lower average performance if they move to G2 whereas the individuals in G2 face

a higher average performance if they move to G1.

20That is the case for the partitions studied in the subsequent Lemma 2 and also for the ones in Lemma 3,
for some of the individuals.
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Lemma 2. Let bi < b(α, β) for some i ∈ N . Then an AD-partition G = {G1, G2} where

|G1|, |G2| > 1 is stable if and only if

1. ei,G1 + ei,G2∪{i} ≥
2β

α
for each i ∈ G1,

and

2. ej,G2 + ej,G1∪{j} ≤
2β

α
for each j ∈ G2.

Condition 1 of Lemma 2 tells that no individual in group G1, consisting of the individuals

with the highest productivities, has incentives to move to G2, the group formed by the indi-

viduals with the smallest productivities, when she is productive enough so that she can take

advantage of a high average performance. An analogous interpretation follows for condition 2,

describing the incentives of an individual in G2. Such an individual does not have incentives

to move to G1, when her productivity is small enough so that she cannot take advantage of

a high average performance. Condition 2 also implies that the productivity of any individual

in G2 must be sufficiently low, in particular, it must hold that max
j∈G2

bj < b(α, β), and thus

such a restriction on the magnitude of private productivities defines an upper bound on the

cardinality of G2 and a lower bound on the cardinality of G1.

Example 2. Consider a population N = {1, 2, 3, 4} and let G1 = {1, 2}, G2 = {3, 4}. Let

also (b1, b2, b3, b4) = (0.6, 0.5, 0.05, 0.025) and α = β = 1 so that 2β/α = 2. We analyze

individual incentives to remain in their prescribed groups by considering first individuals in

G2. For individual 3 direct computations lead to that e3,G1∪{3} = 1.65 and e3,G2 = 0.11,

therefore the left-hand side of condition 2 in Lemma 2 equals 1.76, meaning that she does

not have incentives to move to G1. It can be shown that this is also the case for individual

4. Note that individuals in G1 do not have incentives to abandon their group since they are

productive enough according to the threshold b(α, β) = 0.5 specified in point 1 of Corollary 1.

In line with the anecdotal evidence discussed in the introductory Section 1 we would be

also interested in stabilizing partitions in which there is a mixing of productivities. With

this aim in mind the following Example 3 describes a class of partitions in which one group

(R)elatively (D)ominates the other and we refer to any partition in this class as a RD-

partition.

Example 3. A class of RD-partitions. Let N ≥ 5 be an odd integer and partition

G = {G1, G2} be such that G1 and G2 are non-consecutive with |G1| = |G2|+ 1. Specifically

1. Let G1 be the union of two intervals, G1 = I1 ∪ I2, such that
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(a) |I1| = |I2| whenever 2−1(N − 1) + 1 is even,

and

(b) |I1| = |I2|+ 1 otherwise.

2. Let G2 be the union of two intervals, G2 = J1 ∪ J2, such that |J1| = 1 and |J2| =
2−1(N − 1)− 1.

We find the case N = 5 useful to understand how individual’s incentives should be

shaped in order to sustain partitions in this class as stable. Then, in such a case we have

that G1 = I1 ∪ I2 = {1, 2} ∪ {4} and G2 = J1 ∪ J2 = {3} ∪ {5}.
1. First, note that each individual i ∈ G1 would face a smaller average performance in

G2 ∪ {i} as basically such an individual i that moves from G1 to G2 is giving up a peer with

higher productivity and choosing a peer with smaller productivity. For instance, individual

1 gives up individuals 2 and 4 and chooses 3 and 5, respectively. Then, in line with the

discussion of the results in Proposition 1, individual 1 would not have incentives to move

to G2 when her efforts are high enough so that she takes advantage of a higher average

performance in G1.

2. Second, note that the contrary happens to individual 3 ∈ J1 ∈ G2 for whom others’

average performance is higher in G1 ∪ {3}, as all the individuals currently in G1 are more

productive than individual 5. Then, in line with the discussion of the results in Proposition 1,

individual 3 would not have incentives to move to G1 when her efforts are low enough for her

to be able to take advantage of a higher average performance in G1 ∪ {3}.
3. Third, individual 5 ∈ J2 ∈ G2 may either face higher or lower average performance

if she moves to G1, and that very much depends on the parameter values. In the example

above individual 5′s peers in G1 ∪{5} are 1 and 2, who are more productive than 3, but also

4, who is less productive and 3.

Relying on these three insights the following result provides the conditions under which

RD-partitions in this class emerge as stable.

Lemma 3. Consider the class of RD-partitions in Example 3 and let bi ≤ b(α, β) for each

i /∈ I1. A RD-partition in this class is stable if and only if

1. ei,G1 + ei,G2∪{i} ≥
2β

α
for each i ∈ G1,

2. ej,G2 + ej,G1∪{j} ≤
2β

α
for j ∈ J1

and
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3. For each k ∈ J2

(i) if Ak,G2 > Ak,G1∪{k} ⇒ ek,G2 + ek,G1∪{k} ≥
2β

α
,

or

(ii) if Ak,G2 < Ak,G1∪{k} ⇒ ek,G2 + ek,G1∪{k} ≤
2β

α
.

Example 4. Consider the case N = 5 above with G1 = I1 ∪ I2 = {1, 2} ∪ {4} and

G2 = J1 ∪ J2 = {3} ∪ {5}. Let α = β = 1, so that 2β/α = 2, and (b1, b2, b3, b4, b5) =

(0.6, 0.5, 0.27, 0.26, 0.25). It then directly follows that individuals 1 and 2 do not have in-

centives to move to G2 since again they are productive enough according to the threshold

b(α, β) = 0.5. For individual 4 we have that e4,G1 = 1.48 + e4,G2∪{4} = 0.68 > 2 implying

that she does not have incentives to move to G2. Finally, regarding individuals in G2, note

that individual 3 ∈ J1 faces a higher average performance if she moves to G1 but since

e3,G2 = 0.718+e3,G1∪{3} = 1.24 < 2 she does not have incentives to do so. For individual 5, it

is the case that A5,G2 = 0.194 < A5,G1∪{5} = 0.713 and e5,G2 = 0.69+ e5,G1∪{5} = 1.21 < 2, so

that the condition in point 3.(ii) holds for her, which implies that she does not have incentives

to move to G1. We thus conclude that the exemplified RD-partition is stable.

Note that in any stable partition in this class, individual j ∈ J1 ∈ G2 (individual 3 in

Example 4) prefers to be a big fish (the highest productivity individual) in her group (the

small pond, which is composed also by individual 5 in Example 4) than a relatively smaller

fish in G1 ∪ {j}, that is, the individual with productivity in position |I1|+ 1 out of |G1|+ 1

individuals (the third individual in G1 ∪ {3} = {1, 2, 3, 4}). The contrary happens to the

most productive individual i ∈ I2 ∈ G1 (individual 4 in the example), who prefers to be a

relatively small fish in her high-quality group (the individual with productivity in position

|I1| + 1 in her big pond G1) than to be a relatively bigger fish in G2 ∪ {i}, that is, the

individual with productivity in the second position out of |G2| + 1 individuals. This latter

effect is more salient the less productive the individual in I2 we consider.

To close this section, we would like to briefly discuss about the existence of stable parti-

tions (in pure strategies) in our model by pointing out how in the extreme case in which local

standing becomes unimportant, β → 0, or group quality becomes increasingly important,

α → ∞, then the set of primitives (bi)i∈N under which the partition consisting of just one

group involving all the individuals becomes bigger (in the inclusion sense).21

The impossibility of guaranteeing the existence of stable partitions in pure strategies for

any set of parameters is (in part) due to the free mobility of individuals among groups, which

21Such a partition is stable under the requirements on productivities described in point 3 of Proposition 1.
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may be seen as a rather demanding assumption. We then may consider that stability relies

on less restrictive conditions and conceive a partition as stable if (i) when an individual is

willing to move from her group, (ii) a given number of individuals in the group she pretends

to move veto her adhesion. That stability notion, defined below, is very much in the spirit

of Watts (2007).

Definition 6. A partition is stable whenever for each individual i ∈ Gs, s, s
′ ∈ {1, 2}, s′ ̸= s,

ui(ei,Gs′∪{i}, e−i,Gs′∪{i}) > ui(ei,Gs , e−i,Gs) ⇒ uj(ej,Gs′∪{i}, e−j,Gs′∪{i}) < uj(ej,Gs′
, e−j,Gs′

) for at

least a number ⌈|Gs′|/2⌉ of individuals j ∈ Gs′ .

We relegate to Subsection 7.4 the discussion of how AD-partitions and the class of RD-

partitions proposed in the main body can be sustained as stable in this case.

4.3 Increasing the importance of group quality (↑ α), or of local standing (↑ β)

An interesting question is how stable partitions are shaped when group quality or local

standing concerns are of increasing importance. Given the potential multiplicity of equilibria

present in our model, we analyze changes in parameters α or β when we depart for a particular

partition that is initially assumed to be stable.

The comparative statics exercise is not obvious since effort choices are endogenously

determined and average performance enters into the individuals’ utility function (see Eq. (2))

through two different channels, namely, group quality and local standing. As an illustration,

consider that group quality concerns increase (↑ α) so that equilibrium efforts increase as

well (recall the efforts’ best reply), then such an increase in turn boosts group quality and

consequently individuals’ local standing might be deteriorated. All these effects are quite

sensitive to the values of the private productivities.

Despite of the difficulties highlighted above we are able to predict the direction in which

a stable AD-partition reacts to changes in parameters, in specific scenarios.

Observation. Consider that for the primitives (bi)i∈N , α, and β an AD-partition G =

{G1, G2} is stable, then

1. Let α increase to α′ > α such that for the most productive individual i ∈ G2 it holds

that

α′ ≥ β

bi(1 + β)
> α. (3)

In this case, G ceases to be stable and, departing from it, any stable partition is an

AD-partition G ′ = {G′
1, G

′
2} such that |G′

1| > |G1| and |G′
2| < |G2|.
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2. Let β increase to β′ > β and bi ≥ β′/α(1 + β′) for each i ∈ G1. In this case, G may

cease to be stable. In such a scenario, departing from G any stable partition is an

AD-partition G ′ = {G′
1, G

′
2} such that |G′

1| > |G1| and |G′
2| < |G2|.

Point 1 of this observation illustrates the case in which group quality concerns become

stronger. In particular, we consider an increase in α that precludes condition (ii) in Lemma 2

to hold for some individuals. Such a change incentivizes, at least, the most productive

individual in i ∈ G2 to move to G1. Notice that no individual j ∈ G1 ∪ {i} has incentives

to move to G2 \ {i} as for her the condition in Eq. (3) automatically holds since she is,

by definition, more productive than any individual in G2. That means that condition 1 in

Lemma 2 necessarily holds for individuals in G1.

If after the departure of the most productive individual i ∈ G2, who moves to move to

G1, condition 2 of Lemma 2 holds for each individual j ∈ G2 \ {i}, we have already reached

a new stable AD-Partition, otherwise, there is an individual j ∈ G2 who would like to move

to G1 and so on.

Thus, in conclusion, sufficiently strong concerns for group quality will cause the movement

of low-productivity individuals to the group in which average performance is higher.22

Point 2 of the observation above illustrates the case in which local standing concerns

become stronger, that is, β increases. Suppose also that α is already sufficiently high so that

the right-hand side of condition 2 of Lemma 2 tends to be small. In this case, an increase in

β boosts efforts sufficiently so that some individuals may be now willing to move to the group

in which they face the highest average performance, that is, condition 2 of Lemma 2 may

end up be violated for them. A more technical argument emerges by taking a look at such

a condition: its left-hand side reveals that the larger α the larger the effect that an increase

in β has on others’ average performance, and thus the larger the effect on effort choices, in

contrast, in the right-hand side the larger α the smaller the effect of an increase in β.23

5 Social welfare

We analyze here the relevant question of how efforts and partitions should be designed in

order to maximize social welfare, and for this purpose we consider two different measures of

22An analogous analysis could be also applied to a situation in which instead of having common group
quality concerns, individuals differ in the importance they grant to such an indicator. Thus, we move from
having common α to a setup in which αi ̸= αj for some pairs i ̸= j while we keep β constant. For instance,
suppose that for common α the AD-partition G = {G1, G2} is stable. Then, if for some individuals i ∈ G2

we have that concerns for group quality increase to αi > α, such individuals may be already willing to move
to G1.

23Formally for each i ∈ G: ∂ei,G/∂α∂β = ∂Ai,G/∂α∂β > 0 and ∂2(β/α)∂α∂β = −1/α2 < 0.
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social welfare, one of them being the sum of individual utilities and the other, the sum of

exerted efforts.

5.1 Social welfare as the sum of individual utilities

Let social welfare be defined as the sum of individual utilities, that is

W ≡
∑
G∈G

∑
i∈G∈G

ui(ei,G, e−i,G).

We say that an outcome pair composed of a partition G and individual efforts eG ≡
(ei,G∈G)i=1,...,N ∈ RN

+ is socially optimal, or efficient, when it maximizes W . Thus, we are

interested in characterizing the efforts that maximize the sum of utilities within a given group

G, namely the efficient efforts. Let eEi,G denote the efficient effort of individual i ∈ G and

eEG be the vector of efficient efforts of all the individuals in G. In the same vein, let AE
i,G be

others’ average performance, when all the individuals in G exert efficient efforts.

Proposition 2. Consider a group G ∈ G. Then, for each i ∈ G the efficient effort satisfies

eEi,G = bi
[
1 + αeEi,G

]
+ αAE

i,G, (4)

where eEi,G = [|G| − 1]−1
∑

j ̸=i e
E
j,G. Given efficient efforts, social welfare, amounts (up to

a constant) to the sum of individuals’ private products, specifically

∑
G∈G

∑
i∈G∈G

ui(e
E
i,G, e

E
−i,G) = 2−1

∑
G∈G

∑
i∈G∈G

bie
E
i,G.

It is direct to observe that efficient efforts do not incorporate concerns for local standing,

that recall, are modulated by β, as in the aggregate the utility gains of individuals who stand

above others’ average performance offset the utility losses of individuals who stand below

others’ average performance, thus the local standing effect cancels out. Further, as the effort

exerted by an individual i (positively) affects all others’ utility via group quality, efficiency

requires the inclusion of such a positive externality, an effect that is captured through the

term αeEi,G in Eq. (4).24

Efficient efforts, described by Eq. (4), differ from Nash equilibrium efforts, described by

the best reply ei,G, (e−i,,G) = bi(1+β)+αAi,G. Only when all the individuals exert the same

effort level, ei,G = β/α for each i ∈ G, then efficient and Nash equilibrium efforts coincide but

24Analogously to the case of Nash equilibrium efforts, there are requirements for efficient efforts to exist.
We refer the interested reader to Subsection 7.5 in the Appendix. Also, note that when G is only composed
of one individual i, then the efficient effort is eEi,G = bi.
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it actually follows that this symmetric proposal cannot be either a solution of the system of

best replies or a solution to the system describing efficient efforts, thus the set of efficient and

Nash efforts is empty. This result, together with some additional aspects, is stated below.

Lemma 4. No effort profile can be simultaneously efficient and a Nash equilibrium. Specif-

ically, eEG − eG has at least one entry different from zero. Further, for each individual i, the

difference eEi,G − ei,Gs

1. Increases as α increases.

2. Decreases as β increases.

3. Increases as bj increases, for any j ∈ G (possibly j = i).

The discrepancy between efficient efforts and Nash equilibrium efforts depends on the

importance of local standing, modulated by β, and group quality, modulated by α. If group

quality is of great importance efficient efforts tend to be the highest because in the aggregate

higher efforts by individuals positively affect all others via high average performance. If on

the contrary local standing is of great importance Nash equilibrium efforts increase whereas

efficient efforts do not. Finally, the more productive individuals are, the more positive the

difference between efficient and Nash equilibrium efforts, because intuitively efficiency re-

quires that the effect of an increase in individuals’ productivity permeates all others’ efforts

via group quality. Finally, note that for some individuals efficient efforts may be higher than

Nash equilibrium efforts while for others this relation may be reversed.25

Example 5. As a follow-up of Example 1, recall that Nash equilibrium efforts are e1,G = 1.9

and e2,G = 1.56 whereas for the same parameter values efficient efforts amount to

eE1,G =
α(b1 + b2)b2 + b1
1− α2(b1 + b2)2

=
1.04

0.64
= 1.62, eE2,G =

α(b1 + b2)b1 + b2
1− α2(b1 + b2)2

=
0.88

0.64
= 1.37.

For both individuals, efficient efforts are below Nash equilibrium efforts when α = 0.5 but

if we consider a higher value α′ = 0.57, efficient efforts are above Nash equilibrium efforts, in

particular, e1,G = 1.98 < eE1,G = 2.01 and e2,G = 1.7 < eE2,G = 1.77.26

25As a related aspect, see the discussion in Subsection 7.5 for an analysis of how to restore efficient efforts.
26For slightly smaller α′ the efficient effort of individual 1 is below her Nash equilibrium effort and the

contrary happens to individual 2. Finally, as an illustration of point 3 of Lemma 4, when the productivity of
individual 2 increases from 0.4 to 0.7, efficient efforts become higher than Nash equilibrium efforts.
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Finally, it is important to emphasize that contrary to Nash equilibrium efforts, efficient

efforts are such that more productive individuals exert higher effort (and thus also generate

higher private product).

We now study efficient partitions keeping in mind that in order to maximize social wel-

fare we require that individuals exert efficient efforts. It is the case that in efficient efforts,

individual productivities complement each other, more specifically, the reaction of an individ-

ual’s effort to an increase in the productivity of another individual is stronger the higher the

individual’s own productivity, a prediction consistent with the findings by Ding and Lehrer

(2007) that high-ability students benefit more from having higher-achieving schoolmates than

students with lower ability do. This type of complementarity in productivities naturally leads

to that efficient partitions must avoid productivity mixing and promote the grouping of in-

dividuals according to their productivities, thus only AD-partitions can be efficient. That is

the content of the following result.

Proposition 3. Partitions that maximize the sum of individual utilities consist of consec-

utive groups. Thus, if a group is a singleton, it must be composed of the least productive

individual.

The specific architecture of the consecutive groups in a AD-partition is however sensitive

to the primitives of the model. We exemplify the case N = 4 via simulations to illustrate

which partitions consisting of consecutive groups are efficient. We find that partition G1 =

{1, 2}, G2 = {(3, 4} is efficient with a disproportionately high average frequency that lies in

the range [84%, 92%] and that tends to increase with α, followed by partition G′
1 = {1, 2, 3},

G′
2 = {4} which is efficient with an average frequency that lies, respectively, in the range [16%,

8%]. That suggests that complementarities in productivities are better exploited when the

two most productive individuals form a group. There is however run for specific productivity

values to play some role.27

Regarding the overall welfare effects of changes in α, β and productivities, note first that

social welfare increases as α does regardless of whether, upon such an increase, the efficient

partition consists of different groups than those that arise before the change. The reason is

that the sum of individuals’ private products that each partition induces increases with α

and thus, the potential new efficient partition necessarily yields higher social welfare than

the efficient one before the change. In the simplest case of two individuals, the efficient

27We run 1000 iterations each of which contains 1000 random draws of productivity values. The results
hold for the all values of α ∈ {0.25, 0.35, 0.45, 0.55} considered, and when productivities are drawn from a
Beta distribution B(p, q) with p = q = 1, the high variance case, and two cases with smaller variance: (i)
p = 2, q = 1 in which higher productivities are relatively more frequent, and vice versa for (ii) p = 1, q = 2.
The code for the simulations and the resulting data appear in the supplementary material.
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partition is the one in which these individuals form a group G because, intuitively, they both

exert greater effort if they are grouped together than if they are isolated. In this case, social

welfare is 2−1[b1e
E
1,G+ b2e

E
2,G] and since efficient efforts are increasing in α, so is this measure.

Second, since efficient efforts are not affected by local concerns, social welfare does not vary

with β. Finally, as efficient efforts are increasing in productivities, that is also the case for

social welfare, again regardless of which one is the efficient partition after such an increase.

5.1.1 The stability of efficient partitions

A final interesting question is whether such efficient partitions can also be stable. Recall that

for a partition to be efficient individuals must be exerting efficient efforts, thus to approach

the assessment of stability in this context we assume that any individual in a given group

evaluates whether she benefits from moving to the alternative group under the case in which

she, and all the individuals in such an alternative group, exert efficient efforts.

To set the result, for i ∈ Gs let eEi,Gs&Gs′∪{i}
≡ (eEi,Gs

, eEi,Gs′∪{i}
) and analogously for

eEi,Gs&Gs′∪{i}
, for s′ ̸= s.

Lemma 5. Consider that an AD-partition G = {G1, G2}, where |G1|, |G2| > 1 is efficient.

Then, such a partition is also stable according to Definition 2 if and only if

1. For each i ∈ G1

eEi,G1
+ eEi,G2∪{i} + 2biθ(e

E
i,G1&G2∪{i}, e

E
i,G1&G2∪{i}) > 2β

[
1

α
−

bi(e
E
i,G1

− eEi,G2∪{i})

eEi,G1
− eEi,G2∪{i}

]
;

2. For each j ∈ G2

eEj,G2
+ eEj,G1∪{j} + 2bjθ(e

E
j,G2&G1∪{j}, e

E
j,G2&G1∪{j}) < 2β

[
1

α
−

bj(e
E
j,G1∪{j} − eEj,G2

)

eEj,G1∪{j} − eEj,G2

]
,

where

θ(eEi,Gs&Gs′∪{i}
, eEi,Gs&Gs′∪{i}

) =
α|eEi,Gs

eEi,Gs
− eEi,Gs′∪{i}

eEi,Gs′∪{i}
| − β|eEi,Gs

− eEi,Gs′∪{i}
|

|eEi,Gs
− eEi,Gs′∪{i}

|
.

The conditions for stability in Lemma 5 contain additional elements than the parallel

conditions in Lemma 2 and the reasons are that we now consider efficient efforts and, in

contrast to Nash equilibrium efforts, such efficient efforts incorporate the positive externality

that individuals impose on their peers via group quality.
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From the point of view of an individual who evaluates whether to join an alternative

group, the right hand side of the conditions above informs about the difference between

others’ average performance in her current group and in the alternative group times β, and

thus reflects how local standing might be affected.28 That expression is positive and smaller

than 2β/α, which recall is the right hand side of the conditions in Lemma 2. The left hand

side of the aforementioned conditions is, briefly, a re-expression of the sum of the private

benefits that accrue to individual i when she exerts the efficient effort in her current and her

alternative group, plus the between groups difference in social benefits due to group quality

concerns.29

The mechanisms for stability are thus analogous to the ones already posed in Lemma 2,

namely, an individual i ∈ G1 would not have incentives to join G2, in which individuals

are of relatively smaller productivity than the ones of i′s current group, when, briefly, the

improvement in local standing she may experience in G2 is sufficiently small compared to the

decrease in group quality when she moves to such a group. An analogous interpretation (in

the natural opposite direction) follows for individuals in G2.

Further, an implication of the comparative statics results on the difference between effi-

cient and Nash equilibrium efforts in Lemma 4 is that for sufficiently small β, efficient efforts

may overcome Nash efforts. When that is the case and θ takes positive values, the condition

in point 1 would be less stringent for individuals in G1 whereas the condition in point 2 would

be more stringent for individuals in G2, than the parallel conditions in Lemma 2.

For the aforementioned case N = 4, partition G1 = {1, 2}, G2 = {(3, 4} is efficient and

stable, according to Definition 2, with an average frequency that lies in the range [25%, 40%]

for B(1, 1), [42%, 50%] for B(2, 1) and [5%, 32%] for B(1, 2). For partition G′
1 = {1, 2, 3},

G′
2 = {4} average frequencies lie in [1%, 2%] for B(1, 1), [2.6%, 4%] for B(2, 1) and [0.25%, 1%]

for B(1, 2).30

28Using efficient efforts in Eq. (4) we obtain that the right hand side of the condition in point 1 amounts
to 2β(Ai,G1

−Ai,G2∪{i})/(e
E
i,G1

− eEi,G2∪{i}). An analogous expression follows for the condition in point 2.
29Note that θ emerges from considering that the utility of an individual i ∈ G, who exerts the efficient

effort, amounts to 2−1(eEi,G)
2 − βAE

i,G + bie
E
i,G(β − αeEi,G). Note also that θ can be interpreted as a measure

of how much efficient efforts differ from Nash equilibrium efforts. More specifically, it can be shown that if
from the point of view of individual i, others’ average effort equals β/α in any group she belongs to, this
expression cancels out. Also, the right hand side of the conditions in Lemma 5 would reduce to 2β/α, as in
the conditions of Lemma 2.

30For B(1, 2) frequencies of 5% and 0.25% are small compared to the lower bounds in the remaining
distributions, but these values appear only for α = β = 0.25. The reason for these outlier values is that
small productivity values make it hard for individuals to be willing to remain in G1, in particular, the left-
hand side of the condition in point 1 of Lemma 5 is really small with respect to 2β/α. For higher values
of α these average frequencies in fact exhibit a jump and are relatively closer to the ones of the remaining
distributions. The reason why for distribution B(2, 1), which favors high productivity values, stability may
not be compromised, is the order of magnitude of the ratio 2β/α with respect to productivity values and the
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The conditions for efficient partitions to be stable according to Definition 6 are analogous

to the ones posed in Lemma 5 and have also analogous interpretations. Such conditions

would simply state that when an individual i ∈ Gs has incentives to move to Gs′ then

at least a number ⌈Gs′/2⌉ of individuals in Gs′ would veto her movement. Intuitively, an

individual i ∈ Gs′ would veto the movement of an individual of say, smaller productivity

than the individuals currently in Gs′ , whenever, briefly, for such an individual i this change

in group composition causes a decrease in group quality that overcomes the improvement

in local standing. An analogous mechanism will be at work when an individual of higher

productivity than the individuals currently in Gs′ pretends to join such a group. In this case,

group quality would be improved, but some of the individuals may see their local standing

deteriorated and thus veto the adhesion of such a new member.

Formally, individuals in G1 would veto the movement of an individual j ∈ G2 when for

the majority of them a modified version of the condition in point 1 of Lemma 5 holds. In

particular, for each i ∈ G1 who vetoes j′s movement we require that

eEi,G1
+ eEi,G1∪{j} + 2biθ(e

E
i,G1&G1∪{j}, e

E
i,G1&G1∪{j}) > 2β

[
1

α
−

bi(e
E
i,G1

− eEi,G1∪{j})

eEi,G1
− eEi,G1∪{j}

]
.

Under such a condition individual i is worse off if j, who is an individual of relatively

lower productivity, joins G1. A direct implication that results from this expression is that

when local standing is not important (β → 0), local standing gains from admitting a member

of lower productivity are hardly exploited, in particular the right hand side of the expression

above becomes sufficiently small. Under small β, the left hand side also becomes bigger (θ

increases). Thus, individual i is likely to veto the entry of a lower productivity member. An

analogous modified version of the condition in point 2 should hold for an individual in G2

who vetoes the movement of an individual i ∈ G1.

Recall that under Definition 6 of stability the frequency with which efficient partitions

are stable increases by definition, with respect to Definition 2, in fact for the case N = 4

efficient partitions are all stable under Definition 6 of stability.31

The stability of efficient partitions is also affected by changes in concerns for group quality,

via α, or local standing, via β. To shed light on this issue it is perhaps useful to note that the

utility that accrues to an individual i ∈ G can be written, plugging efficient efforts described

fact that θ in the condition in point 2 of Lemma 5, which may take either sign, has a higher impact because
of the more frequent high-productivity values.

31That is not always the case, if we diminish the importance of local standing by setting β = 0.01 and
increase the importance of group quality by setting α = 1 efficient partitions are not all stable.
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by Eq. (4) in Eq. (2), as

2−1eEi,G[bi + α[AE
i,G − bie

E
i,G]] + β[bie

E
i,G − AE

i,G]. (5)

As efficient efforts do not depend on β, we directly observe in Eq. (5) that if an individual’s

private product is below others’ average performance, an increase in β hurts her and vice

versa. In an efficient AD-partition, in which G1 absolutely dominates G2, the utility of

the least productive individual in i ∈ G1 decreases with β as she is below others’ average

performance in such a group, that is, bie
E
i,G1

−AE
i,G1

< 0, but the utility she would experience

in G2 ∪ {i} would increase with β as she would be above others’ average performance in

such a group, that is, bie
E
i,G2∪{i} − AE

i,G2∪{i} > 0. Thus, we expect that increasing values of

β compromise the stability of efficient AD-partitions because of individuals that are below

others’ average performance in G1 and above others’ average performance if they move to

G2.

For the aforementioned case N = 4, the average frequency of efficient and stable (ac-

cording to Definition 2) partitions monotonically decreases with increasing values of β ∈
{0.25, 0.35, 0.45, 0.55}, for each value of α and each of the three distributions of productivity

values considered.

The effect of varying α seems more ambiguous, we observe in Eq. (5) that such a change

would affect efforts, private products as well as (potentially) the distance between private

product and others’ average performance, whose importance also depends on β. From the

discussion above, we emphasize that for relatively high values of β stability may be compro-

mised, even if α increases.

For the case N = 4 described above, changes in α in fact yield more mixed results than

those for the case in which β increases, but some patterns can still be summarized.

1. Partition G1 = {1, 2}, G2 = {3, 4}. For a relatively high β = 0.55 such a partition is

efficient and stable with an average frequency that increases when α increases from 0.25 to

0.35 but that weakly decreases for higher values of α (for B(1, 1) and B(2, 1)), suggesting

also that an increase in α may have more impact if it happens at small values of such a

parameter. For the aforementioned distributions and β < 0.55, such an average frequency

shows an increasing tendency, with minor fluctuations, as α increases. Finally, for B(1, 2)

such an average frequency increases with α for all values of β.32

32When β is relatively smaller, the individuals i that may compromise stability the most are the most
productive ones in G2 whose utility may decrease with α in such a group, as for each of them AE

i,G2
−bie

E
i,G2

<
0, and whose utility may increase if they move to G1, as they are the least productive individuals in such a
group and thus, AE

i,G1∪{i} − bie
E
i,G1∪{i} > 0. The results however suggest that this effect is not that relevant,

in particular for B(1, 2).
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2. Partition G′
1 = {1, 2, 3}, G′

2 = {4}. Such a partition is only efficient and stable

for relatively small β = 0.25. Its average frequency shows a decreasing tendency for B(2, 1)

and B(1, 1) and the reason may be that under such distributions high-productivity values are

relatively (more) frequent. Thus, individual 4 tends to have a relatively high productivity and

therefore (i) her exerted effort in G′
1 ∪ {4} would be high not only because of her (relatively

high) productivity but also because of others’ (relatively high) efforts and, additionally, (ii)

as she is the least productive individual in such a group, AE
4,G′

1∪{4}
− b4e

E
4,G′

1∪{4}
> 0 holds.

Thus, in conclusion, she may have strong incentives to move to G′
1. Finally, for B(1, 2),

which favors low-productivity values, such an average frequency weakly increases with α,

which may suggest that a lowly productive individual 4 does not have incentives to move to

G′
1.

5.2 Social welfare as the sum of individual efforts

We take here the approach of considering that there is a social planner who is concerned with

maximizing the sum of efforts

W ≡
∑
G∈G

∑
i∈G∈G

ei,G.

That seems to be a natural objective, in order to improve performance professors are often

concerned with motivating their students and achieve higher exerted efforts, and managers

may also want to incentivize their employees in this sense.

To analyze this question we need to make a choice on how individuals are going to behave

once they are grouped together, hence we consider that a planner can only design partitions

(into two groups) and that he knows that the individuals within a group would play Nash

equilibrium efforts. It turns out that the Nash equilibrium effort of each individual i in a

given group is increasing in i′s productivity and the more productive i is the more sensitive

she is to other’s productivity (as in the case studied in Subsection 5.1), thus the efficient

partitions in this case also consist of consecutive groups, as the following result states.

Proposition 4. Partitions that maximize the sum of individual efforts consist of consecutive

groups. Thus, if a group is a singleton, it must be composed of the least productive individual.

We summarize the findings regarding the conflict between efficiency and stability for AD-

partitions in this case. If for some i ∈ G2 it holds that bi ≥ b(α, β), no efficient partition is

stable under Definition 2 and efficient partitions are always stable under Definition 6. Note

that in this case some of the individuals in G2 are willing to move to G1 and whereas under

the former definition there is free mobility, under the latter definition individuals in G1, who
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are sufficiently productive as well, will exert their veto power. In fact, if only individuals in

G1 are sufficiently productive according to the specified threshold, an efficient partition is

stable according to Definition 6 because in the case that some individual in G2 would like to

move to G1 they will exert their veto power. In more general terms, for an efficient partition

to be stable according to Definition 2 conditions in Lemma 2 should be satisfied.

Finally, it is also direct to assess that overall welfare increases with α, β, and individual

productivities because Nash equilibrium efforts are increasing in such primitives.

6 Conclusions

This paper studies a model in which individuals are concerned with the quality of their group

and with their standing within such a group. In contrast with the majority of papers within

this literature, both, group configurations and effort choices are endogenously determined

within the model.

Our main aim is to shed light on the relationship between effort choices and group forma-

tion in environments other than firms. In this setting, we rationalize the emergence of group

configurations resembling segregation but also a mixing of productivities, which is consistent

with anecdotal evidence.

In our model, when social welfare is defined as the sum of individual utilities, equilibrium

efforts are never efficient. In light of this result, we offer (Subsection 7.5) a discussion of the

tax/subsidy scheme that a social planner would implement to recover efficiency. How the

fact that individuals anticipate the introduction of tax and subsidies affects the formation of

groups in the first stage is an interesting question that is left for further research.

Regarding group configurations, efficiency requires that groups are consecutive. We would

like to emphasize how this result is due, of course, to the functional form of the individuals’

utility but also to our choice of the social welfare function. In particular, we care about the

sum of individual utilities or of individual efforts and we assume that all the individuals are

equally important. In this case the complementary nature of individual productivities leads

to the results stated above.

If alternatively we would consider that some, maybe the less productive individuals, are

more important from the social point of view the result would probably change in favor of

a mixing of productivities. More specifically, and in the context of the important debate on

whether schools should introduce ability tracking or not, we would like to clearly state that

we are not advocating that ability tracking is better than ability mixing. This is mainly an

empirical question, very sensitive to the characteristics of the environment and therefore a
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model that incorporates other aspects more specific to the analysis of educational policies

would probably be needed.

Regarding the choice of groups in the first stage of the game, an interesting venue of

research would be to consider that individuals have an inherent preference for joining one

of the two groups, apart from how productive are the peers that will ultimately form these

groups. It might be that individuals identify with a given group, for instance a university or

a research department, because of its (political) values and that this makes individuals more

prone to choose a particular institution.

In relation to the local standing part of the utility specification in Eq. (2), an interesting

venue of research entails considering that individuals are more affected by losses when they

stand below others’ average performance than by gains when they stand above others’ average

performance (Tversky and Kahneman, 1991).

To close this section, we would like to point out how Definition 6 of stability allows to

further think in related scenarios in which individuals who hold veto power may be willing

to prioritize either group quality or their local standing and are able to do so by influencing

the group formation process. That perspective opens the possibility of interesting research

venues.

7 Appendix

In this section, we discuss relevant extensions of the baseline model and also aspects related

to the existence of stable partitions and efficient efforts (and how to restore them). We finally

present the technical proofs.

7.1 Externalities between groups

To study the role of externalities between groups we follow the approach of considering

that for each individual in a given group, the average performance of individuals in the

alternative group may affect her positively (for instance, when for research departments it is

beneficial that other departments’ performance is high in order to establish work alliances)

or negatively (it may be the case that for students in a given university, other universities’

performance/position in a ranking negatively affects their chances of accessing to better jobs

or getting grants).33

33Research studying the role of externalities in group formation includes Yi (1997), whose focus is on
the impact of the sign of externalities on equilibrium outcomes under different rules for coalition formation,
Konishi et al. (1997), who analyze group formation in games with network externalities or Pinto et al. (2015),
who study the formation of societies under positive externalities (conformity games) and negative externalities
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More formally, for an individual i ∈ Gs, s ∈ {1, 2}, let TGs′
=

∑
k∈Gs′

bkek,Gs′
/|Gs′| be the

average performance of individuals in Gs′ , s
′ ∈ {1, 2}, s′ ̸= s. Thus, we consider an extended

version of the baseline model which allows for the possibility that each individual i ∈ Gs is

affected by the average performance in group Gs′ , so that in this case individual i′s utility

is generally expressed as vi(ei,Gs , e−i,Gs , TGs′
). Below we define when this extended model

exhibits positive or negative externalities.

Definition 7. Positive externalities (PE). The model exhibits positive externalities if for

each i ∈ Gs, vi(ei,Gs , e−i,Gs , TGs′
) ≥ vi(ei,Gs , e−i,Gs , T̂Gs′

) for TGs′
≥ T̂Gs′

, s, s′ ∈ {1, 2}, s′ ̸= s.

Definition 8. Negative externalities (NE). The model exhibits negative externalities if

for each i ∈ Gs, vi(ei,Gs , e−i,Gs , TGs′
) ≤ vi(ei,Gs , e−i,Gs , T̂Gs′

) for TGs′
≥ T̂Gs′

, s, s′ ∈ {1, 2}, s′ ̸=
s.

With the purpose of offering preliminary results on the role of externalities between

groups, we consider in particular that vi(ei,Gs , e−i,Gs , TGs′
) = ui(ei,Gs , e−i,Gs)m(TGs′

), m ∈
{f, g}, where ui(ei,Gs , e−i,Gs) is described by Eq. (2) and we restrict the attention to the case

in which it takes positive values. Further, m is a function that takes positive values and in the

PE case m = f , where f is increasing in its argument, whereas in the NE case m = g, where

g is decreasing in its argument.34 This specification allows us to guarantee that the best

reply of individual efforts is analogous to the one in the model without externalities between

groups, so that we can compare both approaches in a smooth way. Still, this specification is

flexible enough to accommodate the case in which externalities enter in an additive separable

way (for instance when m(x) = 1 + x/ui(., .)) or in a multiplicative way. We present below

a preliminary result.

Lemma 6. For each i ∈ Gs, s ∈ {1, 2} and s′ ∈ {1, 2}, s′ ̸= s, let vi(ei,Gs , e−i,Gs , TGs′
) =

ui(ei,Gs , e−i,Gs)m(TGs′
). Then, with respect to the model without externalities between

groups, the condition that guarantees that no individual i ∈ Gs has incentives to move

to Gs′

1. Is harder to be met if TGs′
< TGs\{i} and there are positive externalities, or if TGs′

>

TGs\{i} and there are negative externalities.

(congestion games). Also, see Bloch (2005) for an analysis of the role of externalities with applications to
industrial organization.

34As long as m takes positive values, the analysis of the case in which the utility function takes negative
values is analogous to the one presented, with the difference that f should be decreasing in its argument and
vice versa for g.
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2. Is easier to be met if TGs′
< TGs\{i} and there are negative externalities, or if TGs′

>

TGs\{i} and there are positive externalities.

Notice that when an individual i ∈ Gs evaluates whether to move to Gs′ she takes into

account that her alternative group would become Gs \ {i} if she decides to do so, thus

the relevant comparison for individual i is between TGs′
and TGs\{i}. Thus, if for such an

individual the average performance in the group she would abandon is in fact high enough

she would have even more incentives to move when such an average performance benefits

her (PE case) and less incentives to do so when such an average performance hurts her (NE

case), than in the framework without externalities.35

An implication of the aforementioned results is that the sign of externalities affects the

incentives of individuals in different ways and also that individuals in different groups assess

externalities differently. For instance, an AD-partition that is stable in the model without

externalities may fail to be stable in the PE case and the reason is that an individual i ∈ G1

may now have incentives to move to G2 because once she moves to such a group she faces

an alternative group with high average performance (such group would be G1 \ {i} and note

that average performance in such group is higher than in G2). In the NE case such an

AD-partition may also fail to be stable but now the reason is that an individual in i ∈ G2

may have incentives to move to G1 and hence face a smaller average performance in the

alternative group, which now is G2 \ {i}. Analogous mechanisms are at work for the case of

RD-partitions depending on whether individuals face higher or lower average performance in

an alternative group when they evaluate whether to move, and on the sign of externalities.

7.2 Incomplete information about the productivity of individuals

In some environments, it seems natural that individuals face uncertainty about others’ at-

tributes, for instance, the actual productivity of other students in the classroom or colleagues

in a research department may not be known with certainty. We formalize this idea by con-

sidering that there is incomplete information about individuals’ productivity. As we shall

show, the results are (with their own particularities) smooth extensions of the ones in the

main body.

Let N be a set with a population of N individuals. Each individual is labeled as i ∈
{1, 2, ..., N} and characterized by an exogenous productivity parameter that defines her type.

Nature assigns each individual a type and individuals learn their own type but not other

35As long as m takes positive values, the case in which the utility of an individual i in her own group and
in the alternative group she may move to have opposite signs, the condition for stability either always hold
in both, the model with externalities and the model without externalities or does not hold in either model.
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individuals’ types. Let B be a finite set of types and Bi ⊆ B be the set of types that

individual i ∈ N can be assigned with positive probability. Let b ∈ B be a particular type

profile for which we sometimes use the notation (bi, b−i) to separate between the type of an

individual i and the types of the individuals different from i.

A pure strategy for an individual i is a mapping si : Bi → gi × ei, such that when

individual i is assigned type bi, si(bi) is a pair consisting of gi(bi) ∈ {G1, G2} and ei(bi). Note

that ei(bi) is itself a mapping from the set of possible profiles of group choices, each of them

g ≡ (g1, g2, ...gN), and for each collection b−i of others’ types, to the effort exerted by the

type bi of individual i. Let finally Si be the set of pure strategies available to individual

i. Individuals’ payoffs depend on the strategies and types of all individuals. Formally, let

S = ×Si and B = ×Bi and consider that for each i ∈ N there utility function ui : S×B → R
that takes the form in Eq. (2).

We assume that individuals have consistent beliefs with respect to the probability dis-

tribution of type profiles p : B → R+, according to which players are assigned their types,

where p(b) is the joint probability distribution of the type profile b, so that
∑

b∈B p(b) = 1.

Finally, let p(b−i|bi) be the conditional probability that other individuals are assigned types

b−i when individual i is assigned type bi.

The equilibrium notion is Perfect Bayesian equilibrium, which in this case reduces to

ensure that for each profile of group choices g the efforts exerted by individual types constitute

a (Bayesian) Nash equilibrium and that no individual type has incentives to deviate from its

group.

Definition 9 and Definition 10 help to formalize these ideas. To do so, it is useful to

simply consider that for a fixed profile of group choices g in which the type bi of individual

i chooses to belong to an arbitrary group G, ei,G(bi) is the effort exerted by such a type in

group G, for each particular collection of others’ types b−i who also choose G. Let also ei,g

denote the collection of efforts exerted in g by all the types of individual i.

Definition 9. Fix a profile of group choices g ≡ (g1, g2, ...gN). Then, the effort choices

(e1,g, e2,g, ..., eN,g) constitute a Bayesian Nash equilibrium of the effort choice subgame when-

ever for each individual i and each of her types bi ∈ G it holds that∑
b−i∈B−i

ui(ei,G(bi), e−i,G(b−i), bi, b−i)p(b−i|bi) ≥∑
b−i∈B−i

ui(e
′
i,G(bi), e−i,G(b−i), bi, b−i)p(b−i|bi), e′i,G(bi) ̸= ei,G(bi) for some b−i.

Definition 10. A profile of group choices g ≡ (g1, g2, ...gN) is stable whenever for each
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individual i and each of her types bi ∈ Gs, s, s
′ ∈ {1, 2} and s′ ̸= s it holds that∑

b−i∈B−i

ui(ei,Gs(bi), e−i,Gs(b−i), bi, b−i)p(b−i|bi) ≥∑
b−i∈B−i

ui(ei,Gs′∪{bi}(bi), e−i,Gs′∪{bi}(b−i), bi, b−i)p(b−i|bi).

We highlight here the parallelisms with the results in the baseline model and comment on

the particularities attached to this framework. We mainly illustrate the case of AD-partitions,

and then emphasize that the case of RD-partitions relies on analogous intuitions.

1. AD-profiles. We say that a profile of group choices is an AD-profile when for each type

profile b, one of the groups, say G1, absolutely dominates the other, G2.

For an AD-profile to be stable according to Definition 2 (the conditions being analogous

to the ones of Lemma 2) it must be the case that for each individual i none of her types bi has

incentives to deviate from its group (recall that types in G1 face a higher average performance

in such group than if they move to G2 and vice versa for types in G2). Specifically, for each

type bi ∈ G1 it must hold that∑
b−i∈B−i

(Ai,G1(bi, b−i)− Ai,G2∪{k}(bi, b−i))[2
−1α(ei,G1(bi) + ei,G2∪{i}(bi))− β]p(b−i|bi) ≥ 0,

and for each type bj ∈ G2 it must hold that∑
b−j∈B−j

(Aj,G2(bj, b−j)− Aj,G1∪{j}(bj, b−j))[2
−1α(ej,G2(bj) + ej,G1∪{l}(bj))− β]p(b−j|bj) ≥ 0.

Note that from the point of view of an arbitrary type bi ∈ G, Ai,G(bi, b−i) accounts for

others’ types average performance in G.36

Intuitively, types in G1 should be, ”on average”, sufficiently productive for them not to

have incentives to move to G2, and the contrary must happen to types in G2. Finally, we

emphasize that in general a stable AD-partition may involve situations in which all the types

of an individual select the same group (pooling equilibrium) but also situations in which

different types select different groups ((semi)separating equilibrium). For instance, if it is

the case that for each pair of individuals i < j each of the types of individual i is more

productive than each of the types of individual j, then a stable AD-partitions may be the

result of a situation in which all the types of an individual select the same group.

36For types in G1 others’ average performance is higher in G1 and if they move to G2 and the contrary
happens for types in G2.
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Finally, note that if the productivity of types in G1 is (weakly) higher than b(α, β) then

the AD-profile is stable according to Definition 6.

2. Analogously, we say that a profile of group choices is a RD-profile when for each type

profile we have the configuration of groups described in Example 3. The analysis of stability

in this case is also qualitatively analogous to the one in the main body, in particular, we must

impose that for each type profile b the productivity of types that are not in I ′
1 is smaller than

b(α, β).

3. Note that apart from these two extreme scenarios in which for each type profile there is

the same pattern of absolute or relative dominance between groups, we may have situations in

which in a profile of group choices we do not always observe the same pattern. The stability

analysis in this case is left for further research.

4. Finally, the social welfare analysis is parallel to the one in the main body. In particular,

regardless of whether we define social welfare as the sum of individual utilities or as the sum

of exerted efforts, it is maximized when for each type profile groups are consecutive.

7.3 More than two groups

We comment here on the case in which there are more than two groups to which individuals

may belong. Notice that for an arbitrary individual i conditions (i) and (ii) in point 1 of

Proposition 1 are incompatible, in words, if an individual is not willing to move to a group in

which others’ average performance is smaller than in her current group then she will in fact

have incentives to move to a group in which others’ average performance is higher than in

her current group. The implication of this result is that the maximum number of groups all

of which can be ranked according to absolute dominance is two. More generally, a partition

is stable only if groups are such that each individual faces either higher or lower average

performance in all the alternative groups she would potentially move to, but not both at the

same time. This implies that when there are more than two groups any stable partition must

involve a mixing of individual productivities.

Under Definition 2 of stability allowing for free mobility of individuals the requirement

above that each individual faces either higher or lower average performance in all the alter-

native groups actually strengthens the requirements for a partition to be stable. However,

under Definition 6 some of the individuals who would be willing to move to a group in which

they face a higher average performance will be vetoed by the current members of such a

group. In this case, partitions exhibiting a mixing of productivities may arise as stable, as

the following example shows.
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Example 6. Consider the setup of Example 4 and add two individuals that are now the two

most productive, we have (b1, b2, b3, b4, b5, b6, b7) = (b1, b2, 0.6, 0.5, 0.27, 0.26, 0.25). The new

groups are G′
1 = {3, 4} ∪ {6}, G′

2 = {5} ∪ {7}, G′
3 = {1, 2}. Let b1, b2 > 0.6 and then notice

that none of the individuals in G′
3 are willing to move to the alternative groups since they

are productive enough. Moreover, we already showed in Example 4 that individuals in G′
1

and G′
2 do not have incentives to move between these two groups. Finally, note that under

Definition 6 of stability, individual movements from G′
1 or G

′
2 to G′

3 are vetoed by individuals

1 and 2 since they both suffer utility losses when a (less productive) individual intends to

move to such a group. Thus, this partition is stable.

Note again that individuals in G′
1 and G′

2 do not have incentives to move between these

two groups, and thus, as we already illustrated in Example 4, some of these individuals

prefer to be big fishes in a relative small pond and some others prefer to be small fishes in a

relatively high pond.

7.4 Existence of stable partitions (in pure strategies)

We consider here Definition 6 of stability to discuss about the existence of stable partitions:

1. A stable AD-partition G = {G1, G2} exists for any parameter configuration (bi)i∈N , α

and β such that bi > b(α, β) for individuals in G1. In this case the number of individuals that

would allow the adhesion of a new member to G1 is not sufficient since in fact all of them

suffer utility losses when others’ average performance decreases and that is the case when a

less productive member moves to G1.

2. Consider an RD-partition G = {G1, G2}, as the one described in Example 3. Notice

that |I1| = ⌈|G1|/2⌉. Let (bi)i∈N , α and β be such that bi > b(α, β) for each i ∈ I1. In

this case, the movement to G1 of any i ∈ J2 is vetoed by all the individuals in I1. The

reason is the one presented above: this adhesion lowers the average performance that each

of the individuals in I1 faces. Notice also that none of these individuals has incentives to

move to G2. It then follows that for such a RD-partition to be stable (i) either condition 2

of Lemma 3 is satisfied for individual j ∈ J1, or it is not satisfied but individuals in I1 veto

her adhesion and (i) condition 1 of Lemma 3 needs to be checked only for the individuals in

I2 and also

Regarding (i), it is intuitive that when individual j ∈ J1 is of sufficiently low productivity,

the average performance from the point of view of individuals in I1 would decrease in G1∪{j},
as an illustration, using the setup of Example 4, for individuals 1 and 2, who belong to G1,

A1,G1 = 0.62 > A1,G1∪{3} = 0.47 and A2,G1 = 0.74 > A2,G′
1∪{3} = 0.55.
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In line with the discussion above the following result establishes how equilibrium efforts

are shaped when an individual moves to a group. With this information, we can keep track

of how average performance is affected and then offer sharper insights regarding the stability

of a RD-partition, as it will be made clearer below. For this purpose let e+j the vector of

equilibrium efforts of individuals in G1 ∪ {j} and e the augmented vector of equilibrium

efforts of individuals in G1 where an entry equal to zero is introduced in the position that

individual j would occupy, according to the ranking of productivities.

Lemma 7. Consider a RD-partition as the one described in Example 3 and let ∆je = e+j−e.

It then follows that
(∂∆je)i
∂bj

> 0

for each i ∈ G1 ∪ {j}.

The equilibrium efforts of individuals in G1 ∪ {j} are increasing in bj because on the

one hand the efforts contained in e, which are computed before individual j moves to the

group, are not affected by the productivity of individual j, and on the other hand, the efforts

contained in e+j all increase when the productivity of j increases. Then, the smaller bj the

easier is that the average performance from the point of view of individuals in I1 decreases

when j moves to the group. Hence, such individuals will veto the adhesion of individual j.

In what follows we illustrate this intuition for a RD-partition. In Table 1, the RD-partition

described in Example 3 is stable for the parameters considered, when b3 = {0.21, 0.4, 0.5}.
Individual 4 does not have incentives to move to G2 as e4,G1 = 2.5 > 2β/α = 2, thus condition

1 of Lemma 4 is satisfied for her. Further, individuals 1 and 2 are sufficiently productive and

thus they do not have incentives to move to G2 and neither allow the adhesion of individuals

3 to their group G1, since this lowers all the efforts and hence the average performance 1 and

2 face. They thus neither allow the adhesion of individual 5.

∆3e b3 = 0.21 b3 = 0.4 b3 = 0.5 b3 = 0.6 b3 = 0.69
e1,G1∪{3} − e1,G1 -0.46 -0.2 -0.02 0.19 0.4
e2,G1∪{3} − e2,G1 -0.52 -0.25 -0.06 0.16 0.37
e3,G1∪{3} − e3,G1 1.68 2.21 2.52 2.85 3.13
e4,G1∪{3} − e4,G1 -0.82 -0.51 -0.3 -0.03 0.2

e4,G1 2.5 2.5 2.5 2.5 2.5

Table 1 – Differences in equilibrium efforts for increasing values of b3, (b1, b2, b3, b4, b5) =
(0.8, 0.7, b3, 0.2, 0.1) and α = β = 1

Regarding (ii), we provide a sufficient condition for individuals in I2 not to have incentives

to abandon their own group.
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Lemma 8. Consider a RD-partition described in Example 3 and let bj ≥ b(α, β) for each

j ∈ I1. Then, if for the least productive individual k ∈ I2 it holds that

bk(1 + β) ≥ β

α

[
2−

α
∑

i∈I1 bj

|G1| − 1

]
, (6)

then no individual in I2 ∈ G1 has incentives to move to G2.

If group quality is sufficiently relevant with respect to local standing (low β/α) or in-

dividuals in I1 are sufficiently productive, individuals in I2 would have fewer incentives to

abandon their own group. In both cases, the right-hand side of Eq. (6) tends to be small.

The results in Lemma 7 and Lemma 8 allow us to conclude that (i) the higher the

productivities of the individuals in I1, who are also the most productive individuals in the

society and (ii) the closer j ∈ J1 is to the most productive individual in I2, the easier is that

the conditions that ensure the stability of the proposed RD-partition are met.

7.5 Efficient efforts: existence and a tax/subsidy scheme to restore them

The following Lemma 9 states when efficient efforts exist, as we did for Nash equilibrium

efforts. For a group G of cardinality |G|, let V be a square matrix of size |G| with entries:

vii = 0 and vij = (bi + bj)/(|G| − 1), j ̸= i and denote by δ1(V ) its largest eigenvalue. Let I

an identity matrix of size |G|, and b be the vector of private productivities.

Lemma 9. The matrix [I−αV ]−1 is well-defined and non-negative if and only if 1 > αδ1(V ).

Then, efficient efforts are uniquely characterized by

eEG = (I − αV )−1b.

For each pair of individuals i, j ∈ G such that bi > bj it holds that eEi,G > eEj,G and, as a

consequence, bie
E
i,G > bje

E
j,G.

We also comment on the possibility of introducing per-unit taxes/subsidies to restore

efficient efforts. In particular, suppose that we add a stage before the effort game is played,

in which a planner announces a per unit of effort tax/subsidy. In this case individuals choose

effort by internalizing such a tax/subsidy scheme, and that would induce the choice of efficient

efforts as a result. The scheme consists on giving each agent i ∈ G the following tax/subsidy

per unit of effort

SE
i = bi

[
α
∑

j ̸=i e
E
j,G

|G| − 1
− β

]
. (7)
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The expression in Eq. (7) results when individual i chooses effort to maximize the utility

function

ui(ei,G, e−i,G) = [bi + SE
i ]ei,G − 1

2
e2i,G + α[ei,G Ai,G]− β[Ai,G − biei,G],

The tax/subsidy scheme suggests that it is necessary to subsidize individuals when others

in their own group exert an average effort above β/α, as in this case efficient efforts are

above Nash equilibrium efforts, and tax them in the opposite case, as it follows that Nash

equilibrium efforts are above efficient efforts. Thus, there are particular situations in which

to increase welfare, efforts should even be taxed. That may happen in particular when local

standing concerns are very important and group quality concerns, on the contrary, are not.37

Example 7. As a follow-up to Example 5 recall that Nash equilibrium efforts are e1,G = 1.9

and e2,G = 1.56 whereas efficient efforts are smaller for each individual and equal to eE1,G =

1, 62 and eE2,G = 1.37, respectively. Thus both individuals are over-exerting effort we they

make decisions unilaterally and these actions impose negative externalities on others (α is

sufficiently small and β is sufficiently high). As a consequence, both individuals should be

taxed to restore efficient efforts. In particular, we would have that SE
1 = −0.25 < 0 and

SE
2 = −0.08 < 0. Upon an increase group quality concerns through a higher α′ = 0.57,

efficient efforts are above Nash equilibrium efforts, in particular, eE1,G = 2.01 > e1,G = 1.97

and eE2,G = 1.77 > e2,G = 1.68. In this case individuals should be subsidized, that is,

SE
1 = 0.007 > 0 and SE

2 = 0.06 > 0.

7.6 Proofs

Proof of Lemma 1. Consider a group G of size |G| > 1. The best reply ei,G(e−i,G) =

bi(1 + β) + αAi,G of each i ∈ G can be expressed in matrix form as

eG = Bb+ αWeG, (8)

where α > 0 is a scalar, eG is the |G| × 1 vector of efforts, b is the |G| × 1 vector of

productivities, and B is a square diagonal matrix of size |G| such that entry bjj = 1 + β.

Finally, W is the square matrix of size |G| with entries: wii = 0 and wij = bj/(|G| − 1), for

each j ̸= i. By Theorem 6.2.24 in Horn and Johnson (2013) and Theorem III* in Debreu

37See Helsley and Zenou (2014) and Ushchev and Zenou (2020) for an analysis of taxes/subsidies on effort
choices and Langtry (2023) for related intuitions in the context of consumption choices and local comparisons.
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and Herstein (1953), the system of equations above has a unique solution described by

eG = (I − αW )−1Bb

if and only if 1 > αµ1(W ), where µ1(W ) is the largest eigenvalue of W . In such a solution,

for each pair i, j ∈ G such that bi > bj ⇒ biei,G > bjej,G. Consider

ej,G(e−j,G) = bj(1 + β) + (|G| − 1)−1α
[
biei,G +

∑
k ̸=i,j

bkek.G
]
,

and

ei,G(e−i,G) = bi(1 + β) + (|G| − 1)−1α
[
bjej,G +

∑
k ̸=i,j

bkek.G
]
.

It follows that ej,G(e−j,G)− ei,G(e−i,G) = (bj − bi)(1 + β) + α(|G| − 1)−1[biei,Gs − bjej,G].

Assume, contrary to our statement, that bjej,G ≥ biei,G. In this case the right-hand side

of the previous equality is negative. For the left-hand side to be negative we require that

ei,G > ej,G but this implies the contradiction that bjej,G < biei,G. Thus, it must be the case

that biei,G > bjej,G.

Proof of Proposition 1. We prove points 1 to 3 of Proposition 1. Consider a group

Gs ∈ G, s ∈ {1, 2}.
Points 1 and 2. The utility of individual i in Gs ∈ G when she plays her best reply

ei,Gs = bi(1 + β) + αAi,Gs can be rewritten, using Eq. (2), as

2−1e2i,Gs
− βAi,Gs . (9)

Her utility if she moves to group Gs′ ∈ G, s′ ∈ {1, 2}, s′ ̸= s is

2−1e2i,Gs′∪{i} − βAi,Gs′∪{i}. (10)

Let Ai,Gs′∪{i} ≤ Ai,Gs . It then follows that ei,Gs′∪{i} < ei,Gs and thus i does not have

incentives to move to Gs′ if and only if Eq. (9) ≥ Eq. (10), that is, e2i,Gs
− e2i,Gs′∪{i}

≥
2β[Ai,Gs − A−i,Gs′∪{i}]. This expression is equivalently rewritten as

ei,Gs + ei,Gs′∪{i} ≥
2β

α
. (11)

By analogous reasoning, an individual j in Gs is not willing to move to a group Gs′ such

that Aj,Gs ≤ Aj,Gs′∪{j} if and only if
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ej,Gs + ej,Gs′∪{j} ≤
2β

α
. (12)

Notice that Eq. (12) is violated for any j such that bj > β/α(1+ β) since in this case, we

have that ej,Gs > β/α, and ej,Gs′∪{j} > β/α. Thus, such an individual can only face a smaller

average performance in a group different from her own.

Point 3. Use the best reply of an individual i ∈ G, |G| > 1 to write the equilibrium utility

as 2−1[bi(1 + β) + αAi,G]
2 − βAi,G. Recall that the utility of i when she is the only member

of a group is 2−1b2i . Consider then the function f(x) = 2−1[bi(1 + β) + αx]2 − βx− 2−1b2i or

equivalently f(x) = 2−1α2x2 + (αbi(1 + β)− β)x+ 2−1b2i [(1 + β)2 − 1]. This function takes a

positive value at x = 0 and is non-decreasing in x if and only if f ′(x) = α2x2+αbi(1+β)−β >

0, thus, bi ≥ β/α(1 + β) suffices for f(x) > 0 whenever x ≥ 0.

Proof of Lemma 2. Consider a partition G = {G1, G2} composed of non-singleton groups,

where G1 absolutely dominates G2. In this case, any individual in G1 faces a smaller average

performance if she moves to G2, and the contrary happens to any individual in G2 who moves

to G1. We prove the formal statement below.

According to the proof of Lemma 1 we have that eG = (I − αW )−1Bb. For αµ1(W ) < 1,

we argued that (I−αW )−1 is well-defined. Note that (I−αW )−1 can be equivalently written,

using the Neumann series expansion, as T ≡
∑∞

k=0 α
kW k. Let tij be an arbitrary ij entry of

T . We have that tij =
∑∞

k=0 α
kw

[k]
ij , where w

[k]
ij is ij the entry of W k.

Consider two groups, G of cardinality n and G of cardinality m, where n and m are not

necessarily equal. Set, for simplicity, |G|, |G| > 2.38

We first prove that when each non-zero entry in a n×n productivity matrix W associated

to G is strictly higher than any other non-zero entry in a m × m productivity matrix W

associated to G, then each entry w
[k]
ij of W

k
is (weakly) higher than any other entry w

[k]
hl

in W k. We then use this result to conclude that equilibrium efforts are the highest in G.

In doing so, it is important to recall the expression above for Neumann series expansion of

(I − αW )−1, upon which equilibrium efforts are characterized. Consider that a productivity

matrix W = (n − 1)−1S, where S has each non-zero generic entry sij (weakly) higher than

any other non-zero entry sij of a matrix S such that W = (m − 1)−1S. We have that

w
[2]
ij = 1/(n − 1)2

∑n
k=1 sikskj. Analogously, for W consider w

[2]
hl = 1/(m − 1)2

∑m
k=1 shkskl.

Notice then that each entry in
∑n

k=1 sikskj is (weakly) higher than each entry in
∑m

k=1 shkskl.

That implies that w
[2]
ij > w

[2]
hl ∀i, j, h, l. Consider now W

k
for k > 1. We have that w

[k]
ij =

1/(n − 1)k
∑n

k=1 s
[k−1]
ik skj.

39 Analogously, for W k we have w
[k]
hl = 1/(m − 1)k

∑n
k=1 s

[k−1]
hk skl.

38Below we comment on the trivial case in which some group has cardinality two.
39Notice that there are (n−1)k elements in such a sum, (n−1)k−1 for column i and row i and (n−2)(n−
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Let each element in
∑n

k=1 s
[k−1]
ik skj be higher than each of the elements in

∑n
k=1 s

[k−1]
hk skl.

Thus, by the same reasoning as above, each entry ij in W
k+1

is higher than any other entry

hl in W k+1.

Let G be a group defined by the above productivity matrix W . By previous arguments,

each entry in W
k
is higher than any other entry W k for each k. As the vector b of productivi-

ties associated toG has each entry weakly higher than the vector b of productivities associated

to G, we then conclude that for any i ∈ G the equilibrium effort ei,G =
∑

j((I − αW )−1βb)ij

(see Eq. 7.6) is higher than the equilibrium effort ej,G =
∑

j((I − αW )−1βb)ij of any

j ∈ G ∪ {i}. Thus the private product of each individual in G is higher than the pri-

vate product of any other individual in G ∪ {i}. Therefore from the point of view of i ∈ G

average performance is the highest in her current group. The case in which an individual

i ∈ G is considering moving to G operates in an analogous way (in the natural opposite

direction).40

Using the result in point 1 of Proposition 1 together with the insights above it is direct

to assess that the partition G defined above is stable if and only if Eq. (11) holds for each

i ∈ G1 and Eq. (12) holds for each j ∈ G2.

Proof of Proposition 2. Using the utility specification in Eq. (2) we have that

∑
i∈G

ui(ei,G, e−i,G) =
∑
i∈G

[
bi ei,G − 1

2
e2i,G + α[ei,Gs Ai,G]− β[Ai,G − bi ei,Gs ]

]
.

Note that
∑

i∈G[Ai,G − biei,G] = 0 and thus

∑
i∈G

ui(ei,G, e−i,G) =
∑
i∈G

ei,G

[
bi −

1

2
ei,G + αAi,G

]
. (13)

The efforts that maximize the sum of individual utilities are such that for each individual

i

eEi,G = bi

[
1 +

α
∑

j ̸=i e
E
j,G

|G| − 1

]
+ αAE

i,G. (14)

Plugging Eq. (14) into Eq. (13) we get

1)k−1 for row i and column j ̸= i.
40When a group, say G, has cardinality two, we need to take into account that some of the entries of the

productivity matrix (and its subsequent powers of order k) are zero -these are the off-diagonal entries when
k is odd and the diagonal entries when k is even-. In this case, the proof follows as well. The result simply
states that in the power of the productivity matrix associated to a group G, each non-zero entry is higher
than any other non-zero entry in the corresponding power of the productivity matrix associated to G.
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2−1
∑
i∈G

eEi,G

[
bi + α

∑
j ̸=i(bj − bi)e

E
j,G

|G| − 1

]
.

In the expression above,
∑

i∈G eEi,G
∑

j ̸=i(bj − bi)e
E
j,G = 0 because for each pair i, j ∈ G the

expression −bie
E
i,Ge

E
j,G, which is negative from the point of view of i, enters with a positive

sign for individual j. Thus the sum of individual utilities in G amounts to 2−1
∑

i∈G bie
E
i,G.

Proof of Lemma 3. By analogous reasoning than the one in the the proof of Lemma 2

it also follows that if for two groups of equal cardinality, each entry ij in the productivity

matrix associated to one group is weakly higher than its counterpart entry in the alternative

group, then the equilibrium efforts in the former group are higher than in the latter group.

Consider the RD-partition of Example 3. For each individual i ∈ G1 it follows that

|G1| = |G2 + 1|. Notice that |G2 + 1| is the cardinality of G2 ∪ {i} and that each individual

in G1 has (weakly) higher productivity than the individual that occupies the same position

in terms of productivity in G2 ∪ {i}. Thus, the individuals who belong to G1 enjoy a higher

average performance in their group than if they move to G2. In this case, condition in point

1 of Lemma 3 must hold for each of these individuals.

For j ∈ J1 ∈ G2 it follows that |G1 + 1| > |G2|. Consider the |G2| least productive

individuals in G1 ∪{j} and note that for each j ∈ J1 ∈ G2 and relative to each individual in

G2, the individual that occupies the same position among the least |G2| productive individuals
in G1 ∪{j}, is (weakly) more productive. Thus, we would be able to already conclude, using

analogous arguments than above, that j ∈ J1 ∈ G2 faces a higher average performance in

G1 ∪ {j} than in her current group G2. Moreover, there are still |G1 + 1| − |G2| who are

more productive than the |G2| least productive individuals in G1 ∪ {j} and it also follows,

by analogous reasoning than the one in the proof of Lemma 2, that when we add to a group

G individuals that are more productive than the ones already in such a group, then efforts

(and therefore private products) of the individuals originally in G increase. Thus definitely

j ∈ J1 ∈ G2 faces a higher average performance in G1∪{j} than in G2. In this case condition

in point 2 of Lemma 3 must hold for her.

For individuals in J2 we cannot make the same type of claims above regarding the pairwise

comparisons of productivities. Thus, either of the conditions 1 or 2 in Lemma 3 must hold

for each individual in J2 depending on whether she is facing respectively, a lower or a higher

average performance in the group she evaluates whether to move.

Proof of Lemma 4. Efficient efforts in Eq. (4) of Proposition 2 are expressed in matrix
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form as

eEG = b+ αV eEG, (15)

where α > 0 is a scalar, eEG is the |G| × 1 vector of efforts, b is the |G| × 1 vector

of productivities and V is the square matrix of size |G| with entries: vii = 0 and vij =

(bi + bj)/(|G| − 1), for each j ̸= i.

Let O be a square matrix of size |G| such that an arbitrary row i consists of the entries:

oii = 0 and oij = bi/(|G| − 1), for each j ̸= i. Recall that O = W ′. Notice that V = W +W ′

where W is the square matrix defined in Lemma 1.

It is direct to observe that the expression in Eq. (8) and the expression in Eq. (15) coincide,

and therefore the vector e of efficient and Nash equilibrium efforts coincide, whenever b +

αOe = Bb. Using such an equality, for each i ∈ G we have

α
∑

j ̸=i ej

|G| − 1
= β.

Such an expression simultaneously holds for each i ∈ G whenever all individuals exert

an effort level of β/α. Thus, suppose that there is an effort profile that is simultaneously

efficient and a Nash equilibrium. Then, using the efficient efforts in Eq. (4) or the effort’s

best reply, it must hold that for each i ∈ G

β

α
= bi[1 + β] + β

∑
j ̸=i bj

|G| − 1
, (16)

or equivalently
β

1 + β
=

αbi

1− α

∑
j ̸=i bj

|G| − 1

. (17)

As the left-hand side is a constant, it follows that for each pair i, j ∈ G we have

αbi

1− α

∑
m̸=i bm

|G| − 1

=
αbj

1− α

∑
k ̸=j bk

|G| − 1

.

The expression above implies that

bi[|G| − 1− α
∑
k ̸=j

bk] = bj[|G| − 1− α
∑
m̸=i

bm] = (bi − bj)[|G| − 1] = α[bi
∑
k ̸=j

bk − bj
∑
m ̸=i

bm],

or equivalently

(bi − bj)[|G| − 1] = α[b2i − b2j ] + α(bi − bj)
∑
s ̸=i,j

bs.
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We then have that for an arbitrary individual i

|G| − 1− α
∑
j ̸=i

bj = αbi. (18)

According to Eq. (18) the right-hand side of Eq. (17) equals |G| − 1 ≥ 1 and that is

contradiction since its left-hand side is smaller than one. Thus, we conclude that no strategy

profile in which all efforts are equal to β/α can be efficient and a Nash equilibrium.

It has already been stated above that both efficient and Nash efforts are the same if and

only if b + Oe = Bb and we also argued that this equality led to an impossibility. Thus,

for at least one individual, the efficient effort and the Nash efforts cannot be the same. The

difference OeEG−(B−I)b measures the discrepancy between two such vectors of effort. Using

eEG = (I − αV )−1b we have that the difference between the two vectors of efforts, eEG − eG,

must amount to O(I−αV )−1b−(B−I)b. Using the Newman series decomposition we rewrite

this expression as

[O
∞∑
k=0

αkV k − (B − I)]b,

and thus conclude that the difference eEG − eG increases as: α increases, β decreases and

individuals are more productive.

Proof of Lemma 5. Consider that an AD-partition G = {G1, G2}, where |G1|, |G2| > 1,

is efficient, and recall that individuals in such a partition exert efficient efforts described in

Eq. (4). In this case the utility that accrues to i ∈ Gs, s ∈ {1, 2} amounts to 2−1(eEi,Gs
)2 −

βAE
i,Gs

+ bie
E
i,Gs

(β − αeEi,Gs
). An individual i ∈ G1 does not have incentives to move to G2 if

and only if

2−1(eEi,G1
)2−βAE

i,G1
+bie

E
i,G1

(β−αeEi,G1
) ≥ 2−1(eEi,G2∪{i})

2−βAE
i,G2∪{i}+bie

E
i,G2∪{i}(β−αeEi,G2∪{i}).

(19)

Note that individuals in G2 are each of smaller productivity than individuals in G1, thus

recalling that efficient efforts within a group are computed according to the expression in

Lemma 9 where matrix V has higher entries when we consider group G1 than when we

consider G2, we use analogous arguments than the ones in the proof of Lemma 2 to conclude

than the efforts exerted by the members in G1 are higher than the ones exerted by the

members of G2 ∪ {i}. Also, by the proof of Lemma 9, efficient efforts preserve the order of

individual productivities. These observations allow us to conclude that eEi,G1
> eEi,G2∪{i} and

also that AE
i,G1

> AE
i,G2∪{i}. Thus, using the expression for efficient efforts in Eq. (4) and after
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some direct algebra we conclude that Eq. (19) is equivalent to requiring that

eEi,G1
+ eEi,G2∪{i} + 2bi

[
β
(eEi,G1

− eEi,G2∪{i})

eEi,G1
− eEi,G2∪{i}

+
eEi,G1

(β − αeEi,G1
)− eEi,G2∪{i}(β − αeEi,G2∪{i})

eEi,G1
− eEi,G2∪{i}

]
> 2

β

α
,

.

Let eEi,G1&G2∪{i} = (eEi,G1
, eEG2∪{i}) and analogously for eEi,G1&G2∪{i}. Then, we equivalently

write

eEi,G1
+ eEi,G2∪{i} + 2biθ(e

E
i,G1&G2∪{i}, e

E
i,G1&G2∪{i}) > 2β

[
1

α
−

bi(e
E
i,G1

− eEi,G2∪{i})

eEi,G1
− eEi,G2∪{i}

]
,

where θ(eEi,G1&G2∪{i}, e
E
i,G1&G2∪{i}) is expressed as in Lemma 5. The case of individuals in G2

is analogous and hence omitted.

Proof of Proposition 4. Consider the two groups in which individuals may be organized.

The sum of Nash equilibrium efforts is∑
G∈G

∑
i∈G

ei,G = (1 + β)
∑

i∈G : |G|>1

bi +
∑

i∈G : |G|=1

bi + α
∑

G : |G|>1

∑
i∈G

Ai,G,

where ∑
G : |G|>1

∑
i∈G

Ai,G =
∑

G : |G|>1

∑
i∈G

biei,G.

The Nash equilibrium effort that each individual exerts in a non-singleton group is in-

creasing in that individual’s productivity and also, the more productive the individual is the

more she is sensitive to other’s productivities. The proof of this last part is qualitatively

analogous to the one presented in the proof of Proposition 2, and hence omitted. Thus, we

conclude that partitions that maximize the sum of individual efforts consist of consecutive

groups and that a singleton group must be composed of the least productive individual.

Proof of Lemma 6. In a stable partition G, for i ∈ Gs ∈ G it holds that ui(ei,Gs , e−i,Gs)m(TGs′
)−

ui(ei,Gs′∪{i}, e−i,Gs′∪{i})m(TGs\{i}) ≥ 0, s, s′ ∈ {1, 2}, s ̸= s′ and m ∈ {f, g}.
Let ui(ei,Gs , e−i,Gs) > 0 and ui(ei,Gs′∪{i}, e−i,Gs′∪{i}) > 0. Recall that in the model with no

externalities, the condition is equivalent to require that

ui(ei,Gs , e−i,Gs)

ui(ei,Gs′∪{i}, e−i,Gs′∪{i})
≥ 1, (20)
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whereas in the model with externalities, we equivalently have

ui(ei,Gs , e−i,Gs)

ui(ei,Gs′∪{i}, e−i,Gs′∪{i})
≥

m(TGs\{i})

m(TGs′
)

. (21)

It is then useful to consider two cases

1. If TGs′
< TGs\{i} then under positive externalities m = f and f(TGs′

) < f(TGs\{i}), thus

Eq. (21) is harder to be met than Eq. (20) and under negative externalities m = g and

g(TGs′
) > g(TGs\{i}), thus the contrary happens.

2. if TGs′
> TGs\{i} then under positive externalities m = f and f(TGs′

) > f(TGs\{i}), thus

Eq. (21) is easier to be met than Eq. (20) and under negative externalities m = g and

g(TGs′
) < g(TGs\{i}), thus the contrary happens.

Proof of Lemma 7. We analyze how equilibrium efforts change when a new individual

moves to group G. Let ∆j the operator that maps a vector or matrix into the values of

this vector or matrix before and after an individual j moves to G. Thus ∆je = e+j − e

captures changes in equilibrium efforts and ∆jW = W+j−W captures changes in the matrix

of weights after individual j moves to G. Note that ∆jb is a vector of cardinality |G| in
which the only non-zero entry corresponds to individual j, thus this expression captures the

inclusion of j in G.

Recall that e = αWe+Bb and note that, as individual j is not present initially in G, the

entry corresponding to this individual in (the augmented row vector of cardinality |G|+1) e

takes value zero and W is an augmented matrix of cardinality |G|+ 1 such that row j is full

of zeros. Therefore, the difference in efforts before and after individual j moves to G can be

expressed as

∆je = α[W+je+j −We] +B∆jb.

We rewrite the expression above, adding and subtracting the term W+je, as

∆je = α[W+je+j −W+je+W+je−We] +B∆jb.

In turn, we rewrite such an expression as

∆je = α[W+j∆ie + ∆jWe] + B∆jb, ⇒ ∆je = α[(W + ∆jW )∆je + ∆jWe] + B∆jb, ⇒
∆je = αW∆je+ α∆jW∆je+ α∆jWe+B∆jb.

We finally use ∆jW = W+j −W to end up with the expression
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∆je = αW+j∆je+ α∆jWe+B∆jb,

which is equivalent to

∆je = (I − αW+j)−1[α∆jWe+B∆jb]. (22)

The derivative of ∆je in Eq. (22) with respect to bj is

∂∆je

∂bj
= (I − αW+j)−1

[
1

bj
B∆jb

]
+

∂(I − αW+j)−1

∂bj
[α∆jWe+B∆jb],

or equivalently

∂∆je

∂bj
= (I − αW+j)−1

[
1

bj
B∆jb−

∂(I − αW+j)

∂bj
(I − αW+j)−1[α∆jWe+B∆ib]

]
.

Note that the last term α∆jWe+B∆ib is precisely ∆je in Eq. (22). Thus we have that

∂∆je

∂bj
= (I − αW+j)−1

[
1

bj
B∆jb−

∂(I − αW+j)

∂bj
∆je

]
. (23)

To assess the sign of such a derivative we compute ∆jWe. To do so note that

∆jW =



0
−b2

|G|(|G| − 1)
. . .

bj
|G|

. . .
−bk

|G|(|G| − 1)
. . . . . .

−b1
|G|(|G| − 1)

0 . . .
bj
|G|

. . .
−bk

|G|(|G| − 1)
. . . . . .

...
...

...
...

...
b1
|G|

b2
|G|

. . . 0 . . .
bk
|G|

. . . . . .

...
...

...
...

...
−b1

|G|(|G| − 1)

−b2
|G|(|G| − 1)

. . . 0 . . . · · · . . . . . .

...
...

...
...

...
...

...
...

...
...

−b1
|G|(|G| − 1)

−b2
|G|(|G| − 1)

. . .
bj
|G|

. . . . . . . . . 0



.

Thus [∆jWe]′ =
[
A1, A2 . . . A|G|

]
where for i ̸= j, Ai = −

∑
m ̸=i,j bmem

|G|(|G| − 1)
and Aj =

∑
m ̸=j bmem

|G|
.

Note then that (∆je)j > 0, that is, individual j exerts positive effort in G′
1 ∪ {j}. Thus using

Eq. (23) we conclude that
(∂∆je)i
∂bj

> 0
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for each i ∈ G∪{j}, since (I−αW+j)−1 is a matrix of positive entries and

[
1

bj
B∆jb−

∂(I − αW+j)

∂bj
∆je

]
in Eq. (23) is a vector of positive entries, specifically, entry j is (1 + β) and each entry i ̸= j is

αAj/|G|.

Proof of Lemma 8. Consider the RD-partition described in Example 3 and let bi ≥ b(α, β)

for each i ∈ I1. For such a partition to be stable for each individual j ∈ I2 condition in (i)

in Lemma 3 must hold. A sufficient condition for that to happen is that ej,G1 ≥ 2β/α. We

now consider the best reply of an individual j

ej,G1 = bj(1 + β) + α

[∑
i∈I1 biei,G′

1

|G1| − 1
+

∑
i ̸=j∈I2 biei,G1

|G1| − 1

]
. (24)

Since bi ≥ b(α, β) for each i ∈ I1, each of these individuals exerts, at least, a level of

effort β/α in G1. Thus, a lower bound for Eq. (24) is

bj(1 + β) +
β
∑

i∈I1 bi

|G′
1| − 1

.

Therefore a sufficient condition for (i) in Lemma 3 to hold for each j ∈ I2 is that

bj(1 + β) ≥ β

α

[
2−

α
∑

i ̸=j∈I1 bi

|G1| − 1

]
.

If this expression holds for the least productive individual k ∈ I2, it holds for everyone in

such a group.

Proof of Lemma 9. The system of equations described in Eq. (15) has a unique solution if

and only if 1 > γ1(V ) where γ1(V ) is the largest eigenvalue of V . The proof is analogous to

the one of Lemma 1 and hence omitted. It remains to show that for each pair i, j ∈ G such

that bi > bj ⇒ eEi,G > eEj,G. Let δ1 = (|G| − 1)−1
∑

k ̸=i,j bke
E
k.G and δ2 = (|G| − 1)−1

∑
k ̸=i,j e

E
k.G

and thus

eEj,G = bj(1 + αδ2) + αδ1 + (|G| − 1)−1α(bj + bi)e
E
i,G,

and

eEi,G = bi(1 + αδ2) + αδ1 + (|G| − 1)−1α(bj + bi)e
E
j,G.

We thus have that [eEi,G − eEj,G][1 + α(|G| − 1)−1(bi + bj)] = (bi − bj)(1 + αδ2). As bj < bi,

the right-hand side of this equality is positive, so is the left-hand side. That implies that

eEi,G > eEj,G and thus it directly holds that bie
E
i,G > bje

E
j,G.
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Proof of Proposition 3. Consider a group G and use the expression in Lemma 9 describ-

ing efficient efforts in matrix form. We have that

∂eEG
∂bi

=
∂(I − αV )−1

∂bi
b+ (I − αV )−1 ∂b

∂bi
. (25)

In this expression, the second component is a vector of positive entries. Regarding the

first component, we have that

∂(I − αV )−1

∂bi
= −(I − αV )−1∂(I − αV )

∂bi
(I − αV )−1, (26)

where for i and each j ̸= i

−
[
∂(I − αV )

∂bi

]
ij

= −
[
∂(I − αV )

∂bi

]
ji

=
α

|G| − 1
, (27)

and for j, k ̸= i [
∂(I − αV )

∂bi

]
kj

=

[
∂(I − αV )

∂bi

]
jk

= 0. (28)

Thus, [∂(I − αV )−1/∂bi]b in Eq. (25) results in a vector of positive entries. Therefore,

∂eEG/∂bi in Eq. (25) has each entry positive. Using Eq. (25) it follows that

∂

∂bj

[
∂eEG
∂bi

]
=

∂

∂bj

[
∂(I − αV )−1

∂bi
b+ (I − αV )−1 ∂b

∂bi

]
. (29)

Consider a group of cardinality higher than two and note that for each i, each entry in

V includes the element bj for each j ̸= i, thus the second component in Eq. (29),

∂

∂bj

[
(I − αV )−1 ∂b

∂bi

]
=

∂(I − αV )−1

∂bj

∂b

∂bi
, (30)

is a vector of positive entries.41 The first component in Eq. (29),

∂

∂bj

[
∂(I − αV )−1

∂bi
b

]
=

∂2(I − αV )−1

∂bi∂bj
b+

∂(I − αV )−1

∂bi

∂b

∂bj
,

is a vector of non-negative entries. Thus, for each pair of individuals i, j ∈ G it follows

that (i) ∂eEG/∂bi > 0 and (ii) ∂/∂bj
[
∂eEG/∂bi

]
> 0.

We therefore conclude that (i) each individual’s effort is increasing in others’ productivity

and (ii) the more productive each individual is, the more sensitive she is to an increase in

41The case of groups of cardinality two is analogous and the only difference is that the main diagonal of
V k is composed of zeros, for any value of k. Despite this fact, the above statement regarding the derivative
in Eq. (30) follows.
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others’ productivity. By the proof of Proposition 2 aggregate utility of individuals within

a group is essentially the sum of individuals’ private product. Since private product is

productivity times effort in an efficient partition non-singleton groups should be consecutive.

Finally, note that the sum of private products (divided by two) can be written as

2−1

[∑
i∈N

b2i + α
∑
G∈G

∑
i∈G

bi[bie
E
i,G + AE

i,G]

]
.

Since for each individual i the efficient effort and others’ average performance are increas-

ing in productivities, a singleton group must consist of the least productive individual.
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